Claim Missing Document
Check
Articles

Found 8 Documents
Search

BANTUAN TEKNIK DAN PERENCAAAN PEMBIAYAAN REVITALISIASI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO KAMPUNG BUNIKASIH DESA BUKANAGARA KECAMATAN CISALAK Novandri Tri Setioputro; Muhtar Kosim; Kasda Kasda; Sugeng Sutikno; Ari Ajibekti Masriwilaga
BERNAS: Jurnal Pengabdian Kepada Masyarakat Vol. 4 No. 1 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1063.136 KB) | DOI: 10.31949/jb.v4i1.4097

Abstract

Bunikasih Rural community and the Faculty of Engineering at the University of Subang took the initiative to build the Bunikasih Micro Hydro Power Plant (MHP) in 2013, with financial support from CRS BNI Go Green. The Bunikasih MHP is situated in the Bunikasih area of Cupunagara Village, Cisalak District, Subang Regency, West Java Province, Indonesia. The Bunikasih MHP was initially utilized to supply electricity for the Bunikasih Rural community, which at the time was off grid. In 2018, an earthquake occurred therefore it made MHP Bunikasih malfunctioning. The Engineering Faculty team and the Bunikasih community undertook Focus Group Discussion/FGD activities prior to the MHP Bunikasih damage survey. The results of the FGD activities are the revitalization of the Bunikasih MHP so that it can operate again. It was also proposed that MHP Bunikasih is to be utilized to support the increase in the processing of agricultural production. The survey revealed that Bunikasih MHP suffered heavy damage. The channel was cracked and broken. The penstocks was bent. The roof of the turbine house was collapsed. The generator and electrical controls were fried. Damage to civil buildings can be repaired by making a new building structure in the damaged part. The bent pen stock is repaired by cutting the bent part and replacing it with a new pipe. A new roof is installed to the turbine house. The generator and control system are fixed and new components are installed. In general, all components of the Bunikasih MHP that were damaged can be repaired and revitalized. The cost for the revitalization is Rp. 213,700,000.00.
Investigation of experimental study of biomass performance of wood pellets, palm shells, and rice husk in vacuum pressure gasification system Novandri Tri Setioputro; Muntar Kosim; Dede Iman Saputra
Journal of Earth Energy Engineering Vol. 12 No. 1 (2023)
Publisher : Universitas Islam Riau (UIR) Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jeee.2023.12284

Abstract

The development of biomass-based renewable energy has received extra momentum due to the petroleum/coal-based energy crisis and global warming. Vacuum suction gasification is capable of creating combustible, power-generating synthesis gas. In this vacuum suction gasification, palm shells biomass and wood pellets performed better than rice husks. The production of synthetic gas was stable. It ran for 6.5 hours straight for the ability of palm shells and wood pellets to maintain sustainable temperatures in the reactor to maintain the gasification reaction. Rice husk was not suitable for this type of gasification. It did not maintain a suitable temperature for the gasification reaction to perform well. Value of heat losses in the lining of the reactor was large, more than 2,000 watts which might be the factor that prevented the rice husk from running well. Water was sprayed onto biomass at the reactor’s input to increase its hydrogen content. Oil palm shells responded well to this treatment. It produced better syngas output sustainably. The wood pellet was not responded well to water spray. It crumbled into small pieces. Rice husk is not responded well either. Syngas produced by the reactor was burned and used to boil water. In this gasification system, palm shells and wood pellets had apparent heat values of 5.62 kW and 5.41 kW, respectively. The efficiency of palm shells and wood pellets results in performances of 29.20 percent and 29.96 percent, respectively.
BANTUAN TEKNIK DAN PERENCAAAN PEMBIAYAAN REVITALISIASI PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO KAMPUNG BUNIKASIH DESA BUKANAGARA KECAMATAN CISALAK Novandri Tri Setioputro; Muhtar Kosim; Kasda Kasda; Sugeng Sutikno; Ari Ajibekti Masriwilaga
BERNAS: Jurnal Pengabdian Kepada Masyarakat Vol. 4 No. 1 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/jb.v4i1.4097

Abstract

Bunikasih Rural community and the Faculty of Engineering at the University of Subang took the initiative to build the Bunikasih Micro Hydro Power Plant (MHP) in 2013, with financial support from CRS BNI Go Green. The Bunikasih MHP is situated in the Bunikasih area of Cupunagara Village, Cisalak District, Subang Regency, West Java Province, Indonesia. The Bunikasih MHP was initially utilized to supply electricity for the Bunikasih Rural community, which at the time was off grid. In 2018, an earthquake occurred therefore it made MHP Bunikasih malfunctioning. The Engineering Faculty team and the Bunikasih community undertook Focus Group Discussion/FGD activities prior to the MHP Bunikasih damage survey. The results of the FGD activities are the revitalization of the Bunikasih MHP so that it can operate again. It was also proposed that MHP Bunikasih is to be utilized to support the increase in the processing of agricultural production. The survey revealed that Bunikasih MHP suffered heavy damage. The channel was cracked and broken. The penstocks was bent. The roof of the turbine house was collapsed. The generator and electrical controls were fried. Damage to civil buildings can be repaired by making a new building structure in the damaged part. The bent pen stock is repaired by cutting the bent part and replacing it with a new pipe. A new roof is installed to the turbine house. The generator and control system are fixed and new components are installed. In general, all components of the Bunikasih MHP that were damaged can be repaired and revitalized. The cost for the revitalization is Rp. 213,700,000.00.
Kaji Eksperimental Gasifikasi Biomassa Reaktor Tekanan Vakum Setioputro, Novandri Tri; Kosim, Muhtar
MESA (Teknik Mesin, Teknik Elektro, Teknik Sipil, Teknik Arsitektur) Vol. 3 No. 2 (2019): MESA (Teknik Mesin, Teknik Elektro, Teknik Sipil, Teknik Arsitektur)
Publisher : FAKULTAS TEKNIK UNIVERSITAS SUBANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bahan bakar fosil akan habis dan meningkatkan gas CO2sebagai efek rumah kaca.Efek rumah kaca menyebabkan pemanasan global sehingga perlu menggeser teknologi tenaga ke energi terbarukan yang ramah lingkungan. Salah satu energi terbarukan adalah gasifikasi biomassa menjadi pengganti bahan bakar fosil. Saat ini, teknologi grasifikasi biomassa (downdraft gasifier danupdraft gasifier) menggunakan tekanan tinggi (aliran udara didorong) sehingga kerumitan sumplai bahan bakar biomassa ke reaktor dan memiliki resiko terjadinya ledakan[1]. Teknologi gasifikasi biomassa yang lebih mudah dan aman yaitu gasifikasi aliran searah (concurrent gasifier). Gasifikasi aliran searah menggunakan mekanisme aliran biomassa dan udara pada lubang yang samadengan cara diisap melalui tekanan rendah (tekanan vakum). Proses gasifikasi biomassa menjadi gas yang mudah terbakar (syngas) memerlukan temperatur tinggi (800 – 1000 0C)[2].Eksperimen gasifier aliran searah dilakuan dengan 2 jenis biomassa yaitu sekam padi dan temperung kelapa. Gasifier diuji menggunalan isolasi dan tanpa isolasi. Gasifier aliran searah tidak diisolasi menggunakan sekam padi menghasilkan temperatur reaktor sebesar 4330C dan biomassa temperung kelapa menghasilkan temperatur reaktor sebesar 4730C. Temperatur ini tidak memproduksi syngas dengan bukti tidak ada nyala api. Eksperimen gasifier aliran searah diisolasi 30 mm dengan biomassa sekam padi menghasilkan suhu sangat tinggi (1053 0C) dan nyala api akan tetapi mudah mati. Gasifikasi temperung kelapa reaktor diisolasi menghasil produksi syngas berupa nyala api selama 3 jam terus menerus dengan temperatur tertinggi pada reaktor sekitar 8000C. Pengujian variasi ketebalan isolasi reaktor (30 mm, 80 mm dan 130 mm) menghasilkan kemampunan menahan kalor atau penurunan temperatur berbeda-beda. Semakin tebal isolasi reaktor maka semakin kecil penurunan temperaturnya, isolasi tebal 130 mm menghasilkan penurunan temperatur 1720C, isolasi tebal 80 mm menghasilkan penurunan temperatur1980Cdan isolasi tebal 30 mm menghasilkan penurunan temperatur 301 0C. Hasil uji gasifikasi biomassa temperung kelapa pada mesin generator 2 HP berbahan bakar bensin mampu menghasilkan daya keluaran listrik sebesar 457,8 Watt.
Perancangan Sistem Pendingin Pada Gasifikasi Biomassa Reaktor Aliran Searah Untuk Pengganti Bahan Bakar Bensin Mesin Generator 2 kVA Setioputro, Novandri Tri; Setiawan, Ayudi; Kosim, Muhtar
MESA (Teknik Mesin, Teknik Elektro, Teknik Sipil, Teknik Arsitektur) Vol. 3 No. 2 (2019): MESA (Teknik Mesin, Teknik Elektro, Teknik Sipil, Teknik Arsitektur)
Publisher : FAKULTAS TEKNIK UNIVERSITAS SUBANG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sejalan perkembangan jaman dan pertumbuhan penduduk, kebutuhan listrik di Indonesia terus meningkat setiap tahunnya. Banyak pembangkit listrik di Indonesia masih mengandalkan bahan bakar fosil, hal itu berbanding terbalik dengan jumlah bahan bakar fosil yang ketersediannya semakin berkurang dan tidak dapat diperbaharui. Gasifikasi biomassa adalah salah satu teknologi yang dapat digunakan untuk menggantikan bahan bakar fosil, selain karena ramah lingkungan, di Indonesia bahan utama untuk gasifikasi biomassa ini banyak dijumpai dalam bentuk limbah pertanian berupa sekam, jerami, tempurung kelapa dan lain-lain.Gas produk hasil gasifikasi biomassa memiliki suhu yang tinggi, agar tidak merusak komponen-komponen dalam mesin generator yang tidak tahan panas perlu dilakukan perancangan alat sistem pendingin untuk menurunkan suhu gas produk agar dapat digunakan sebagai pengganti bahan bakar bensin pada mesin generator. Perancangan sistem pendingin ini menggunakan metode konveksi bebas, bahan yang digunakan dalam perancangan ini pipa tembaga dan aluminium dengan diameter luar 1 inch, tebal 1,27 milimeter dan panjang 5,8 meter. Pada hasil akhir perancangan didapat laju perpindahan kalor sebesar 4597,5 Watt, dengan total kebutuhan panjang pipa untuk kedua bahan adalah 9,86 meter.
FLUID DYNAMIC SIMULATION ON THE FLARE OF COMBUSTION OF GAS FROM BIOMASS GASIFICATION susanto, dian; Kosim, Muhtar; Wibowo, Ari
Jurnal Mekanika dan Manufaktur Vol 3 No 1 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/jmm.v3i1.5682

Abstract

The use of energy which always comes from fossil fuels will eventually run out, so the development of renewable energy or alternative energy is very important to maintain petroleum reserves and as a substitute for fossil fuels which are the main energy source. One alternative energy is biomass which has not been widely used by the gasification method. The gas produced by the gasification process is utilized by burning it in a flare to get a flame. In this study, the 3D simulation method with Computational Fluid Dynamics (CFD) was used to determine the temperature distribution on the flare walls using CFD simulations and to compare the temperature of the flare walls from the CFD simulation results with the test results. The results of this study, the distribution of combustion occurs in the flare with a temperature of 1106°C in the upper area close to the outlet boundary. The wall temperature comparison shows that the CFD simulation tends to be similar to the test results. This shows that computational fluid dynamic simulations can be used to predict fluid flow rates and combustion reactions.
OPTIMIZATION OF PREDICTION AND PREVENTION OF DEFECTS ON METAL BASED ON AI USING VGG16 ARCHITECTURE kosim, muhtar; Wibowo, Ari; Setioputro, Novandri Tri; Kasda; Susanto, Dian
Jurnal Mekanika dan Manufaktur Vol 3 No 1 (2023)
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31949/jmm.v3i1.6542

Abstract

Manufacturing is one of the most valuable industries in the world, it can be automated without limits but still stuck in traditional manual and slow processes. Industry 4.0 is racing to define a new era in digital manufacturing through the implementation of Machine Learning methods. In this era, Machine learning has been widely applied to various fields and will certainly be very good applied in the manufacturing world. One of them is used to predict and prevent defects in metal. The process of predicting and preventing defects in metal is one of the important efforts in improving and maintaining production quality. Accuracy in predicting and preventing defects in metal can be an innovation and competitiveness in technology, both in production methods, and improving product safety and its users. Human operators and inspectors without digital assistance generally can spend a lot of time researching visual data, especially in high-volume production environments. For this reason, there needs to be research in developing Machine Learning technology in an effort to prevent the occurrence of defects in metal. And one of the development of this technology by using Convolutional Neural Network (CNN) architecture Visual Geometry Group 16 layer (VGG16). As for the metal defect dataset with 10 classes with details for training data as many as 17221, and test dataset as many as 4311, From the use of methods and datasets available, has been done training model used and produce very good accuracy, that is equal to 89% and testing with accuracy equal to 76%. And also done Interpreter process against new input data, to know metal defect type, prediction accuracy and appropriate action to prevent and overcome metal defect type result of Interpreter process application.
Experimental Study on Soaked Corn Cobs as Feedstock for Biomass Gasification in an Open Downdraft Gasifier Kosim, Muhtar; Kasda, Kasda; Saputra, Dede Iman; Kurnia, Yuda; Setioputro, Novandri Tri
Journal of Applied Agricultural Science and Technology Vol. 9 No. 2 (2025): Journal of Applied Agricultural Science and Technology
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/jaast.v9i2.330

Abstract

Fossil fuels, which account for 83% of Indonesia's total energy supply, are depleting and environmentally unsustainable. Corn cob biomass, with an annual yield of 4.34 million metric tons, presents a viable alternative. Through gasification at temperatures of 700–1200°C, corn cobs can be converted into combustible gas or syngas. To enhance syngas yield, the corn cob gasification process can be optimized by increasing moisture content through soaking. However, experiments with soaked corn cobs have shown a significant decline in temperature and gasification zone performance. The gasification temperature decreased from 1024°C to 614°C, falling below the 700°C threshold. Additionally, the gasification zone shifted significantly downward in the reactor. This reduction is attributed to the high moisture content of the corn cobs, which exceeded 30%, reaching 56.78%, allowing the gasification process to last for 48 minutes. Before the gasifier ceased operation, syngas production achieved a promising average thermal power of 1.76 kW with an efficiency of 7.14%. These findings indicate that soaked corn cobs can serve as biomass gasification feedstock, provided the moisture content does not exceed 30%.