Claim Missing Document
Check
Articles

Found 4 Documents
Search

An hybridization of global-local methods for autonomous mobile robot navigation in partially-known environments Sahloul, Samia; Abid, Donia BEN HALIMA; REKIK, Chokri
Journal of Robotics and Control (JRC) Vol 2, No 4 (2021): July (Forthcoming Issue)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2483

Abstract

This paper deals with the navigation problem of an autonomous non-holonomic mobile robot in partially-known environment. In this proposed method, the entire process of navigation is divided into two phases: an off-line phase on which a distance-optimal reference trajectory enables the mobile robot to move from an initial position to a desired target which is planned using the B-spline method and the Dijkstra algorithm. In the online phase of the navigation process, the mobile robot follows the planned trajectory using a sliding mode controller with the ability of avoiding unexpected obstacles by the use of fuzzy logic controller. Also, the fuzzy logic and fuzzy wall-following controllers are used to accomplish the reactive navigation mission (path tracking and obstacle avoidance) for a comparative purpose. Simulation results prove that the proposed path planning method (B-spline) is simple and effective. Also, they attest that the sliding mode controller track more precisely the reference trajectory than the fuzzy logic controller (in terms of time elapsed to reach the target and stability of two wheels velocity) and this last gives best results than the wall-following controller in the avoidance of unexpected obstacles. Thus, the effectiveness of our proposed approach (B-spline method combined with sliding mode and fuzzy logic controllers) is proved compared to other techniques.
Motion System of a Four-Wheeled Robot Using a PID Controller Based on MPU and Rotary Encoder Sensors Sagita, Muhamad Rian; Ma’arif, Alfian; Furizal, Furizal; Rekik, Chokri; Caesarendra, Wahyu; Majdoubi, Rania
Control Systems and Optimization Letters Vol 2, No 2 (2024)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/csol.v2i2.150

Abstract

This research addresses the challenge of developing an effective motion system for a four-wheeled omnidirectional robot configured with wheels at a 45-degree angle, allowing for holonomic movement—motion in any direction without changing orientation. In this system, inverse kinematics calculates each wheel's angular velocity to optimize movement. PID control is implemented to stabilize motor speeds, while odometry guides and determines the robot’s position using initial and target coordinates. The robot operates on a 12-volt power supply and two STM32F103C microcontrollers, utilizing an MPU6050 sensor to maintain orientation and optical rotary encoders for accurate positional tracking. Experimental results demonstrate that the robot achieves optimal motion on x and y axes with PID settings of kP = 0.8, kI = 1.0, and kD = 0.08. This configuration yields a rise time of 0.95 seconds, overshoot of 7.36%, and steady-state error of -0.5 RPM at a setpoint of 350 RPM. Using odometry, the robot successfully navigates various movement patterns with average position errors of 1.2% on the x-axis and 1.6% on the y-axis for rectangular patterns, 2.1% on the x-axis and 2.2% on the y-axis for zig-zag patterns, and 1.75% on the x-axis and 1.15% on the y-axis for triangular patterns. The MPU6050 sensor maintains orientation with an error of 0.65% in triangular patterns and 0.85% in rectangular patterns. Through inverse kinematics, PID control, and sensor integration, the robot reliably follows designated coordinate points.
Enhancing Speed Estimation in DC Motors using the Kalman Filter Method: A Comprehensive Analysis Setiawan, Muhammad Haryo; Ma'arif, Alfian; Rekik, Chokri; Abougarair, Ahmed J.; Mekonnen, Atinkut Molla
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 1 (2024): March
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i1.26591

Abstract

The accurate estimation of speed is crucial for optimizing the performance and efficiency of DC motors, which find extensive applications in various domains. However, the presence of noise ripple, caused by interactions with magnetic or electromagnetic fields, poses challenges to speed estimation accuracy. In this article, we propose the implementation of the Kalman Filter method as a promising solution to address these challenges. The Kalman Filter is a recursive mathematical algorithm that combines measurements from multiple sources to estimate system states with improved accuracy. By employing the Kalman Filter, it becomes possible to estimate the true speed of DC motors while effectively reducing the adverse effects of noise ripple. This research focuses on determining the optimal values for the Kalman Filter parameters and conducting experiments on a DC motor to evaluate the performance of the proposed approach. The experimental results demonstrate that the Kalman Filter significantly improves the control of speed oscillations and enhances the stability of the DC motor system. Furthermore, a comprehensive analysis of the system's response and parameter tuning reveals the impact of different parameter combinations on settling time, overshoot, and rise time. By carefully selecting appropriate parameters, the proposed approach contributes to accurate speed estimation and effective control of DC motors, advancing the understanding and application of the Kalman Filter in various relevant fields. Overall, this research provides valuable insights into enhancing the performance and efficiency of DC motors through the integration of the Kalman Filter method.
Implementing PID Control on Arduino Uno for Air Temperature Optimization Akbar, Afindra Hafiedz; Ma’arif, Alfian; Rekik, Chokri; Abougarair, Ahmed J; Mekonnen, Atinkut Molla
Buletin Ilmiah Sarjana Teknik Elektro Vol. 6 No. 1 (2024): March
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v6i1.9725

Abstract

This research investigates the precise regulation of liquid filling in tanks, specifically focusing on water storage systems. It employs the Proportional-Integral-Derivative (PID) control method in conjunction with an HC-SR04 ultrasonic sensor and an Arduino Uno microcontroller. Given the paramount importance of water as a resource, accurate management of its storage is of utmost significance. The PID control method, known for its rapid responsiveness, minimal overshoot, and robust stability, effectively facilitates this task. Integrating the ultrasonic sensor and microcontroller further augments the precision of water level regulation. The article expounds upon the foundational principles of the PID control method and elucidates its application in the context of liquid tank filling. It offers a comprehensive insight into the hardware configuration, encompassing pivotal components such as the Arduino Uno microcontroller, HC-SR04 ultrasonic sensor, and the L298 driver responsible for water pump control. The experimental approach is meticulous, presenting results from tests involving the Proportional Controller, Proportional Integral (PI) Controller, and Proportional Integral Derivative (PID) Controller. These tests rigorously analyze the impact of varying Proportional Gain (Kp), Integral Gain (Ki), and Derivative Gain (Kd) parameters on crucial performance metrics such as response time, overshoot, and steady-state error. The findings underscore the critical importance of an optimal parameter configuration, emphasizing the delicate equilibrium between response speed, precision, and error minimization. This research significantly advances PID control implementation in liquid tank filling, offering insights that pave the way for developing more efficient liquid management systems across various sectors. The identified optimal parameter configuration is Kp = 5.0, Ki = 0.3, and Kd = 0.2.