Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasterisasi Data Produksi Daging Sapi Menggunakan Algoritma K-Means Orange Data Mining Ramadani, Achmes Dade; Hilmy Ibrahim, Farras; Hidayat, Manarul; Habibullah, Ahmad; Sumanto, Sumanto; Kuswanto, Andi Diah
Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitektur Komputer) Vol 5 No 1 (2025): Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitekt
Publisher : Pustaka Galeri Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55382/jurnalpustakadata.v5i1.1013

Abstract

     Produksi daging sapi merupakan salah satu komponen penting dalam sektor peternakan yang mendukung ketahanan pangan nasional. Mengingat fluktuasi produksi dari tahun ke tahun dan perbedaan karakteristik antar wilayah, diperlukan metode analisis yang tepat untuk mengolah data secara efektif. Penelitian ini bertujuan untuk mengelompokkan data produksi daging sapi di Indonesia selama periode 2021 hingga 2024 menggunakan algoritma K-Means Orange Data Mining. Proses analisis mengikuti tahapan CRISP-DM, mulai dari pemahaman bisnis hingga deployment. Data yang digunakan diperoleh dari Badan Pusat Statistik dan diproses untuk menghasilkan tiga klaster utama: wilayah dengan produksi daging sapi tinggi, rendah, dan sedang. Hasil penelitian menunjukkan bahwa algoritma K-Means Orange Data Mining mampu mengelompokkan data produksi daging sapi secara efektif ke dalam beberapa klaster yang berbeda. Orange Data Mining turut membantu proses analisis data dengan tampilan antarmuka visual yang inovatif dan hasil yang mudah diinterpretasikan. Temuan ini diharapkan menjadi acuan dalam perumusan kebijakan strategis peternakan dan perencanaan distribusi produksi berbasis data. Hasil klasterisasi ini memberikan gambaran kepada pemerintah mengenai tingkat produksi daging sapi di setiap wilayah, sehingga memungkinkan pengambilan kebijakan atau langkah-langkah strategis yang lebih tepat dan sesuai dengan kondisi masing-masing wilayah berdasarkan hasil klasterisasi.
Pengelompokkan Provinsi Berdasarkan Kelayakan Ruang Kelas dan Tenaga Kependidikan Sekolah Dasar Menggunakan Algoritma K-Means: Analisi Data Periode 2023-2024 Wardani, Maidy Tri; Ramadhani, Varla Octavia; Anggreani, Namira; Sumanto; Kuswanto, Andi Diah
Riau Jurnal Teknik Informatika Vol. 4 No. 2 (2025): Juli 2025
Publisher : Prodi Teknik Informatika Universitas Pasir Pengaraian

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30606/rjti.v4i2.3389

Abstract

Abstract This study analyzes the disparity in primary education quality across Indonesian regions using K-Means clustering methodology to group 38 provinces based on classroom adequacy indicators and teaching staff availability for the 2023-2024 period. Adopting the CRISP-DM methodology and utilizing datasets from the Ministry of Education, Culture, Research, and Technology, this research reveals significant educational gaps across Indonesian regions. The analysis results show three clusters reflecting educational conditions: Cluster 1 (low category) encompasses 23 provinces (67.6%) dominated by Eastern Indonesia regions such as Papua, Maluku, and other remote areas; Cluster 2 (medium category) consists of 13 provinces (38.2%) including South Sumatra, Riau, and DKI Jakarta; and Cluster 3 (high category) contains only 3 provinces: East Java, West Java, and Central Java. Clustering validity is confirmed through silhouette coefficient with the highest value of 0.795 for Cluster 2. These findings identify structural inequality between Java and outer Java regions, providing empirical foundation for the government to design more targeted educational equity policies, with priority on infrastructure rehabilitation and teaching staff augmentation in disadvantaged areas to achieve national educational justice. The research demonstrates that educational quality distribution in Indonesia remains heavily concentrated in Java, while remote and eastern regions face significant challenges in both physical infrastructure and human resources, requiring comprehensive government intervention strategies for sustainable educational development. Keywords: K-Means clustering, primary education, regional disparity, educational infrastructure, teaching personnel.
KOMPARASI DECISION TREE, RANDOM FOREST, DAN K-NN MEMPREDIKSI KELULUSAN SISWA MENGGUNAKAN ORANGE Rasendriya, Rafi; Fahrian; Marundrury, Aberahamo Onoma; Jumadi, Yakobus Linus; Sumanto; Kuswanto, Andi Diah
Jurnal Komputer dan Teknologi Vol 4 No 2 (2025): JUKOMTEK JULI 2025
Publisher : Yayasan Pendidikan Cahaya Budaya Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64626/jukomtek.v4i2.414

Abstract

Predicting student graduation is one of the challenges in the field of education that requires a data-driven approach. Not only final grades play a role, but also other factors such as attendance rate, weekly study hours, previous exam scores, and extracurricular activities. This study compares the performance of three classification algorithms—Decision Tree, Random Forest, and k-Nearest Neighbor (k-NN)—in predicting student graduation status based on the Student Performance dataset from Kaggle, which contains 708 student records. The modeling process was conducted using Orange Data Mining through a visual workflow approach. The models were evaluated using 20-fold cross-validation and assessed with performance metrics including AUC, accuracy, precision, recall, F1-score, and MCC. The results show that the Random Forest algorithm achieved the best performance, with an AUC of 97.1%, accuracy of 94.1%, F1-score of 94.2%, precision of 94.2%, recall of 94.1%, and MCC of 79.7%. While Decision Tree and k-NN also performed well, their results were still below those of Random Forest. These findings indicate that Random Forest is the most accurate and stable model for classifying student graduation and demonstrate that Orange Data Mining is an effective tool for applying data mining techniques in the educational field.