Ninuk Wiliani
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Profiling Calon Mahasiswa Program Studi Informatika Menggunakan Decision Tree Rizki Hesananda; Ninuk Wiliani; Latifah
BRITech, Jurnal Ilmiah Ilmu Komputer, Sains dan Teknologi Terapan Vol 2 No 1 (2020): Periode Juli
Publisher : Institute Teknologi dan Bisnis Bank Rakyat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Prospective student data can be used as important information for academic community, therefore proper data management needed to process it. This research uses the prospective student throught the 2020 APERTI scholarship path as the basis for the classification of prospective students which wasa previously done manually using Microsoft Excel so that the classification process is not optimal. The process of identifying profiles uses data mining to determine marketing plans and pattern of prospective students with a profile classification process as well as offering recommendations for them. This research used decision tree (C4.5). The attributes used for the classification process are father’s job, mother’s job, gender, school type, major and the choice of the chosen study program. The result of this research can be used to help sort out prospective students according to the informatics study program.
Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit AIDS Ninuk Wiliani; Anang Martoyo; Angel Tiarma Sipahutar; Alfi Prabowo; Eksa Manda Pramaswari; Novita Maharani Suparta
Journal of Informatics and Advanced Computing (JIAC) Vol 2 No 2 (2021): Journal of Informatics and Advanced Computing
Publisher : Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/jiac.v2i2.3255

Abstract

Aids merupakan sekumpulan gejala akibat kekurangan atau kelemahan sistem kekebalan tubuh yang dibentuk setelah manusia lahir. Aids disebabkan oleh virus yang disebut HIV atau Human Immunodeficiency Virus. Apabila seseorang terkena HIV, maka tubuh manusia akan mencoba menyerang infeksi. Sistem kekebalan manusia yang disebut dengan antibody akan menyerang HIV tersebut. Pada kasus AIDS terdapat banyak data mentah yang dapat diolah dan dikembangkan untuk membantu melihat daerah mana yang mempunyai potensi AIDS terburuk. Metode yang digunakan pada penelitian ini menggunakan metode Klustering K-Mean untuk memperoleh gambaran dari setiap wilayah di Indonesia.
Perbandingan Model CNN dan SVM untuk Klasifikasi Jenis Footwear pada Dataset Alas Kaki Berbasis Citra Gina Annisa; Ninuk Wiliani
Jurnal Teknomatika Vol 18 No 1 (2025): TEKNOMATIKA
Publisher : Fakultas Teknik dan Teknologi Informasi, Universitas Jenderal Achmad Yani Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30989/teknomatika.v18i1.1564

Abstract

The classification of footwear types, such as boots, sandals, and shoes, is a significant challenge in the development of image recognition systems powered by artificial intelligence. This study aims to compare the performance of two popular classification models, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM), in recognizing footwear types. The dataset used is the Footwear-Shoe vs Sandal vs Boot Image Dataset, consisting of 3000 images for each category with a resolution of 136x102 pixels in RGB format. The methodology includes training and testing both models using optimized parameters to measure accuracy, precision, and computational efficiency. The results show that CNN achieves an accuracy of 98%, while SVM reaches an accuracy of 96%. The findings indicate that CNN is more suitable for applications requiring high accuracy, while SVM is an effective alternative in resource-constrained scenarios. This study offers significant contributions to understanding model performance in image-based footwear classification using machine learning.