Zainuddin, Suraya
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Spectral estimator effects on accuracy of speed-over-ground radar Mohd Shariff, Khairul Khaizi; Zainuddin, Suraya; Abdul Aziz, Noor Hafizah; Abd Rashid, Nur Emileen; Zalina Zakaria, Nor Ayu
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3900-3910

Abstract

Spectral estimation is a critical signal processing step in speed-over-ground (SoG) radar. It is argued that, for accurate speed estimation, spectral estimation should use low bias and variance estimator. However, there is no evaluation on spectral estimation techniques in terms of estimating mean Doppler frequency to date. In this paper, we evaluate two common spectral estimation techniques, namely periodogram based on Fourier transformation and the autoregressive (AR) based on burg algorithm. These spectral estimators are evaluated in terms of their bias and variance in estimating a mean frequency. For this purpose, the spectral estimators are evaluated with different Doppler signals that varied in mean frequency and signal-to-noise ratio (SNR). Results in this study indicates that the periodogram method performs well in most of the tests while the AR method did not perform as well as these but offered a slight improvement over the periodogram in terms of variance.
Systematic review: State-of-the-art in sensor-based abnormality respiration classification approaches Razman, Nur Fatin Shazwani Nor; Nasir, Haslinah Mohd; Zainuddin, Suraya; Brahin, Noor Mohd Ariff; Ibrahim, Idnin Pasya; Mispan, Mohd Syafiq
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i6.pp6929-6943

Abstract

Respiration-related disease refers to a wide range of conditions, including influenza, pneumonia, asthma, sudden infant death syndrome (SIDS) and the latest outbreak, coronavirus disease 2019 (COVID-19), and many other respiration issues. However, real-time monitoring for the detection of respiratory disorders is currently lacking and needs to be improved. Real-time respiratory measures are necessary since unsupervised treatment of respiratory problems is the main contributor to the rising death rate. Thus, this paper reviewed the classification of the respiratory signal using two different approaches for real-time monitoring applications. This research explores machine learning and deep learning approaches to forecasting respiration conditions. Every consumption of these approaches has been discussed and reviewed. In addition, the current study is reviewed to identify critical directions for developing respiration real-time applications.