Claim Missing Document
Check
Articles

Found 4 Documents
Search

Sistem Authentikasi Kepemilikan dan Penelusuran Smartphone Berbasis Mobile Furqan, Andi Asyraf; Amiruddin, M Rudini Kurniawan; Syarwani, Andi; Hartinah, Hartinah
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8199

Abstract

Abstrak - Smartphone merupakan suatu kebutuhan tersier setiap manusia yang wajib untuk dimiliki dan mempunyai banyak fungsi yang dapat membantu kegiatan sehari-hari manusia, baik dalam hal komunikasi dan pekerjaan. Di dalam penggunaan smartphone banyak juga yang merasa dirugikan seperti kecurian dan banyaknya orang yang ingin mengakses smartphone tanpa sepengetahuan pemilik. saat ini banyak pengaman smartphone seperti: kunci menggunakan tanda tangan, menggunakan pola, menggunakan sidik jari, dan menggunakan angka serta yang lain, hal ini belum merupakan solusi karena kurangnya tindak lanjut dari aplikasi pengaman smartphone. Untuk mengatasi masalah tersebut maka dibuat sebuah sistem yang dapat mengetahui gambar pelaku dan lokasi terakhir yang mencoba mengakses kunci smartphone. Sistem yang akan dibangun menggunakan tools seperti aplikasi bahasa pemrograman android, aplikasi database MySQL, XAMPP.Kata kunci: Smartphone, Pengaman, MysQL, XAMPP, Authentikasi. Abstract - Smartphone is a tertiary needs of every human that obligation to have and has many functions that can help activity in everyday, better in comunication and work thing. In the use smartphone many people felt harmed like theft and many people want to access the smartphone without other people will know. Today many security smartphone like : lock use signature, use pattern, use fingerprint, use number and others, this thing not a solution because of the lack follow up from security of smartphone. To resolve this problem then be made to a system that can know picture and last location that try to access the lock of the smartphone. The system that will be build use tools like a program language aplication of android, MySQL, XAMPP database aplication.Keywords: Smartphone, Security, MySQL, XAMPP
COMPASS: Comparative Evaluation of Machine Learning Algorithms for DDoS Detection Using ANOVA F-Value on AISED Dataset Hartinah; Syamsuddin, Irfan; Syarwani, Andi
Journal of Embedded Systems, Security and Intelligent Systems Vol 6, No 2 (2025): June 2025
Publisher : Program Studi Teknik Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59562/jessi.v6i2.8276

Abstract

This study presents COMPASS, a comparative evaluation of ten Machine Learning algorithms for DDoS attack detection using the AISED Dataset on Cloud DDoS Attacks. Feature selection was performed using SelectKBest with ANOVA F-Value, evaluating model performance across varying feature dimensions (K = 10, 15, 20, 25). Experimental results demonstrate that ensemble-based methods, particularly Random Forest, Gradient Boosting, and AdaBoost, achieve near-theoretical maximum AUC scores (>0.998) while maintaining fast training times (<0.1 seconds). K-Nearest Neighbors (KNN) also exhibits robust performance (AUC > 0.98) with minimal computational cost. In contrast, Support Vector Machine (SVM) and Quadratic Discriminant Analysis (QDA) show relatively lower accuracy (AUC > 0.85) and suffer from high computational complexity, with SVM requiring up to 572 seconds to train at K=25. These findings highlight the critical trade-off between classification accuracy and computational efficiency in selecting optimal models for real-time DDoS detection systems. As future work, we propose deploying a lightweight version of COMPASS on edge computing devices and integrating it into federated learning frameworks to enable collaborative, privacy preserving model training.
Sistem Absensi Menggunakan Teknologi Qr Code Dan Face Suradi, Andi Asvin Mahersatillah; Syarwani, Andi
e-Jurnal JUSITI (Jurnal Sistem Informasi dan Teknologi Informasi) Vol. 10 No. 1 (2021): e-Jurnal JUSITI
Publisher : Universitas Dipa Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36774/jusiti.v10i1.821

Abstract

Buku atau catatan daftar hadir merupakan salah satu bukti bahwa mahasiswa tersebut telah hadir dalam suatu perkuliahan. Dengan menandai catatan daftar hadir tersebut mahasiswa dinilai telah hadir dan melakukan perkuliahan. Akan tetapi sistem absensi perkuliahan yang bersifat konvensional dapat menimbulkan beberapa kecurangan dikalangan mahasiswa serta rawan kesalahan data. Untuk itu diperlukan suatu sistem absensi yang realtime dari segi pencatatan dan dapat menghindari kecurangan. QR Code dan Face recognition merupakan salah satu metode yang mampu untuk menggantikan sistem absensi konvensional. QR Code menggunakan library Zxing dan Face Recognition menggunakan library EmguCV sehingga aplikasi ini berhasil digunakan. Dengan integrase MySQL untuk penyimpanan data mahasiswa, dosen, maupun perkuliahan, di database ini menjadi catatan absensi yang dapat langsung digunakan untuk pelaporan absensi mahasiswa. Hasil dari penelitian ini menunjukkan bahwa sistem dapat mencatat kehadiran mahasiswa melalui pemindaian QR Code dan Face Recognition.
Automated Student Activity Monitoring Based on Spatiotemporal Modeling Using MediaPipe and Long Short-Term Memory Andi Syarwani; Hartinah; Maya Itasari; Nurul Amalia Amri; Annisa Nurfadhilah; Muhdalifah Muhtar
Journal of Embedded Systems, Security and Intelligent Systems Vol 6, No 3 (2025): September 2025
Publisher : Program Studi Teknik Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59562/jessi.v6i3.9371

Abstract

Computer vision-based Human Activity Recognition (HAR) systems hold significant potential for applications in educational settings, particularly for monitoring student activities in laboratories or classrooms. Activities such as typing, smartphone usage, and resting are often visually indistinguishable due to their highly similar seated postures. This study proposes a spatiotemporal modeling approach to automatically and non-invasively recognize such activities. Body poses are extracted from video streams using MediaPipe Pose and represented as sequential feature vectors, which are then analyzed using a Long Short-Term Memory (LSTM) network to capture temporal dynamics. The model is trained on video data of students performing three primary activity classes. Evaluation on validation data demonstrates a classification accuracy of 98.48%, with average precision, recall, and F1-score values of approximately 98%. However, testing on unseen videos shows a decrease in accuracy to around 65%, primarily due to misclassification in segments with minimal movement. These findings suggest that the model is sensitive to subtle pose transitions, which are common in seated activity contexts. Overall, the proposed approach demonstrates promising potential for automated student activity monitoring and provides a foundation for developing pose-based behavioral analysis systems in contextual learning environments.