Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Computer Science Artificial Intelligence and Communications

Analysis of Historical Student Visit Data Using Time Series Algorithm Sri Ramadhany; Sahara Abdy; Alfiarini
Journal of Computer Science, Artificial Intelligence and Communications Vol 1 No 2 (2024): November 2024
Publisher : Raskha Media Group

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64803/jocsaic.v1i2.16

Abstract

The analysis of historical student visit data plays a critical role in understanding student behavior, optimizing campus resources, and enhancing service delivery in educational institutions. This study presents an analytical approach to examine patterns and trends in student visitations using a time series algorithm. By leveraging historical datasets from campus access logs, we aim to identify periodic behaviors, peak visitation times, and anomalies that may reflect special events or system irregularities. The research employs time series methods such as moving average, exponential smoothing, and ARIMA (AutoRegressive Integrated Moving Average) to forecast future student visit patterns based on previous trends. Data preprocessing, normalization, and visualization techniques are applied to ensure data quality and interpretability. The results demonstrate that student visits tend to follow specific weekly and monthly patterns, with increased activity near academic deadlines or events. The ARIMA model, in particular, shows strong predictive accuracy with minimal error margin. This analysis not only provides insights for administrative planning—such as scheduling staff, managing facilities, or enhancing security—but also serves as a foundation for developing intelligent decision-support systems. In conclusion, applying time series algorithms to historical student visitation data proves effective in predicting future trends, thereby supporting data-driven decision-making processes within educational institutions.