Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOURNAL OF SCIENCE AND SOCIAL RESEARCH

IDENTIFIKASI PENYAKIT TANAMAN JAGUNG DENGAN METODE CERTAINTY FACTOR Lubis, Mustopa Husein; Purnomo, Nopi; Iskandar, Iskandar
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 7, No 3 (2024): August 2024
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v7i3.2080

Abstract

Penyakit adalah perusak tanaman pada akar, batang, daun atau bagian tanaman lainnya sehingga tanaman tidak dapat tumbuh dengan sempurna atau mati. Penyakit merupakan masalah utama bagi para petani jagung, hingga saat ini penyakit yang menyerang tanaman jagung sangat bervariasi. Penyakit  yang  sewaktu-waktu  dapat  menyerang  dapat  berpotensi menginfeksi  tanaman jagung. Penyakit bulai, bercak daun, karat daun, gosong bengkak, busuk pelepah, hawar daun, dan busuk batang adalah beberapa penyakit yang dapat membahayakan tanaman jagung. Untuk itu dirancang suatu sistem pakar mengidentifikasi penyakit tanaman jagung dimana sistem ini dapat mendiagnosa penyakit pada tanaman jagung dengan meniru cara kerja pakar atau ahli. Salah satu bagian dari kecerdasan buatan yaitu sistem pakar.  Metode yang digunakan pada penelitian kali ini ialah metode faktor kepastian (certainty factor),. Hasil bedasarkan gejala-gejala yang dialami oleh tanaman jagung tersebut bahwa penyakit yang terkena pada tanaman jagung adalah Hawar Daun dengan tingkat kepakaran 0,8 dan persentase 80 % dan memiliki nilai akuasi yang cukup baik.
SISTEM PAKAR PENYAKIT PADA TANAMAN SEMANGKA DENGAN METODE CERTAINTY FACTOR Lubis, Mustopa Husein; Martina, Desy; Iskandar, Iskandar
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 1 (2025): February 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i1.2703

Abstract

Abstract: Disease is plant damage to the roots, stems, leaves or other parts of the plant so that the plant cannot grow properly or dies. Disease is a major problem for watermelon farmers, until now the diseases that attack watermelon plants vary greatly. Diseases that can attack at any time can potentially infect watermelon plants. Downy mildew, leaf spot, leaf rust, swelling smut, sheath rot, leaf blight, and stem rot are some of the diseases that can harm watermelon plants. For this reason, an expert system for identifying watermelon plant diseases was designed, where this system can diagnose diseases in watermelon plants by imitating the way experts work. One part of artificial intelligence is an expert system.  The method used in this research is the certainty factor method. The results based on the symptoms experienced by the watermelon plants showed that the disease affected by the watermelon plants was Leaf Blight with an expertise level of 0.8 and a percentage of 80% and had a fairly good assessment value. Keywords: Expert System; Watermelon Plant Disease;Certainty Factor Abstrak: Penyakit adalah perusak tanaman pada akar, batang, daun atau bagian tanaman lainnya sehingga tanaman tidak dapat tumbuh dengan sempurna atau mati. Penyakit merupakan masalah utama bagi para petani semangka, hingga saat ini penyakit yang menyerang tanaman semangka sangat bervariasi. Penyakit  yang  sewaktu-waktu  dapat  menyerang  dapat  berpotensi menginfeksi  tanaman semangka. Penyakit bulai, bercak daun, karat daun, gosong bengkak, busuk pelepah, hawar daun, dan busuk batang adalah beberapa penyakit yang dapat membahayakan tanaman semangka. Untuk itu dirancang suatu sistem pakar mengidentifikasi penyakit tanaman semangka dimana sistem ini dapat mendiagnosa penyakit pada tanaman semangka dengan meniru cara kerja pakar atau ahli. Salah satu bagian dari kecerdasan buatan yaitu sistem pakar.  Metode yang digunakan pada penelitian kali ini ialah metode faktor kepastian (certainty factor),. Hasil bedasarkan gejala-gejala yang dialami oleh tanaman semangka tersebut bahwa penyakit yang terkena pada tanaman semangka adalah Hawar Daun dengan tingkat kepakaran 0,8 dan persentase 80 % dan memiliki nilai akuasi yang cukup baik. Kata kunci: Sistem Pakar; Penyakit Tanaman Semangka; Certainty Factor
EVALUASI MODEL HYBRID NAIVE BAYES-XGBOOST UNTUK KLASIFIKASI SENTIMEN NETIZEN TERHADAP ISU FREE PALESTINE PADA PLATFORM X DI INDONESIA TAHUN 2025 Andrianto, Richi; Lubis, Mustopa Husein; Utami, Urfi; Supriyanto, Asep
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 8, No 3 (2025): August 2025
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v8i3.4103

Abstract

Abstract: The Palestinian conflict has become a global issue that has triggered significant public responses, especially through social media platforms. This study aims to evaluate the performance of a hybrid Naïve Bayes–XGBoost model in classifying netizen sentiment toward the Free Palestine issue on platform X (formerly Twitter) in the year 2025. Data were collected using the X (Twitter) API with keywords such as #freepalestine and #savegaza, then processed through a series of preprocessing stages and sentiment labeling using a lexicon-based approach. The dataset was then split into 80% training data and 20% testing data to compare the performance of the baseline Naïve Bayes model and the hybrid model. The evaluation results show that the baseline Naïve Bayes model achieved an accuracy of 75.7% and an F1-score of 76%, while the hybrid Naïve Bayes–XGBoost model achieved a significantly higher accuracy of 95.5% and an F1-score of 96%. These findings indicate that integrating the two algorithms improves both accuracy and balance in sentiment classification, especially for unstructured and imbalanced data. This study recommends the use of hybrid models for public opinion analysis on social media and suggests further development using deep learning approaches. Keywords: Sentiment Analysis, Free Palestine, Naïve Bayes, XGBoost, Hybrid Model Abstrak: Konflik Palestina menjadi isu global yang memicu respons besar dari masyarakat dunia, terutama melalui media sosial. Penelitian ini bertujuan untuk mengevaluasi performa model hybrid Naïve Bayes–XGBoost dalam mengklasifikasikan sentimen netizen terhadap isu Free Palestine di platform X (Twitter) tahun 2025. Data dikumpulkan menggunakan X (Twitter) API dengan kata kunci #freepalestine dan #savegaza, lalu diproses melalui tahapan preprocessing, dan pelabelan menggunakan pendekatan lexicon-based. Selanjutnya, data dibagi menjadi data latih (80%) dan data uji (20%) untuk membandingkan performa antara model Naïve Bayes dasar dan model hybrid. Hasil evaluasi menunjukkan bahwa model Naïve Bayes dasar menghasilkan akurasi 75,7% dan F1-score 76%, sedangkan model hybrid Naïve Bayes–XGBoost mencapai akurasi 95,5% dan F1-score 96%. Temuan ini menunjukkan bahwa integrasi kedua algoritma mampu meningkatkan akurasi dan keseimbangan klasifikasi sentimen, khususnya pada data yang tidak terstruktur dan imbalanced. Penelitian ini merekomendasikan penggunaan model hybrid untuk analisis opini publik dimedia sosial, serta pengembangan lebih lanjut menggunakan pendekatan deep learning. Kata kunci: Sentimen, Free Palestine, Naïve Bayes, XGBoost, Hybrid Model