Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Cloud Computing Issues, Challenges, and Needs: A Survey Aljanabi, Mohammad; Abd-Alwahab, Shams N.; Saedudin, RD Rohmat; Ebraheem, Hind Raad; Defni, -; Hadi, Ronal; Ismail, Mohd Arfian
JOIV : International Journal on Informatics Visualization Vol 5, No 3 (2021)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.5.3.671

Abstract

Cloud computing represents a kind of computing that is based on the sharing of computing resources instead of possessing personal devices or local servers for handling several applications and tasks. This kind of computing includes three distinguished kinds of services provided remotely for clients that can be accessed by using the Internet. Typically, clients work on paying annual or monthly service fees for suppliers, in order to gain access to systems that work on delivering infrastructure as a service, platforms as a service, and software as a service for any subscriber. In this paper, the usefulness and the abuse of the cloud computing are briefly discussed and presented by highlighting the influences of cloud computing in different areas. Moreover, this paper also presents the kinds and services of cloud. In addition, the security issues that cover the cloud security solution requirements, and the cloud security issues, which is one of the biggest issues in recent years in cloud computing were presented in this paper. The security requirement that needs by the cloud computing covers privacy, lack of user control, unauthorized secondary usage, and finally data proliferation and data flow. Meanwhile, the security issues cover including ownership of device, the trust issue and legel aspects. To overcome the security issues, this paper also presents the solution at the end of this paper.
Bridging Usability and Accessibility of User Authentication using Usable Accessed (UAce) for Online Payment Applications Mohamed, Juliana; Md Fudzee, Mohd Farhan; Ramli, Sofia Najwa; Ismail, Mohd Norasri; Defni, -
JOIV : International Journal on Informatics Visualization Vol 5, No 4 (2021)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.5.4.740

Abstract

Usability and accessibility are significant authentication aspects for online applications. Despite the fact that there are ongoing efforts to improve the interface design, some existing research only focuses on a single aspect of it. Thus, it is vital to investigate how to merge these two features into a practical and workable solution. This study presents a preliminary process for designing accessible and usable applications for online banking payment using Usable Accessed (UAce by adopting Design Science Research (DSR) as its methodology. The UAce standard considers attributes and characteristics from the user authentication. The standard establishes a development method and tool for assessing subjectively and quantitatively usable, as well as the user authentication while taking into account specific elements, qualities, and features. The DSR technique for developing highly usable and accessible interactive apps was utilized in designing this approach.
Big Healthcare Data: Survey of Challenges and Privacy Bin Jubeir, Mohammed; Ismail, Mohd Arfian; Kasim, Shahreen; Amnur, Hidra; Defni, -
JOIV : International Journal on Informatics Visualization Vol 4, No 4 (2020)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.4.4.246

Abstract

The last century witnessed a dramatic leap in the shift towards digitizing the healthcare workflow and moving to e-patients' records. Health information is consistently becoming more diverse and complex, leading to the so-called massive data. Additionally, the demand for big data analytics in healthcare organizations is increasingly growing with the aim of providing a wide range of unprecedented potentials that are considered necessary for the provision of meaningful information about big data and improve the quality of healthcare delivery. It also aims to increase the effectiveness and efficiency of healthcare organizations; provide doctors and care providers better decision-making information and help them in the early detection of diseases. It also assists in evidence-based medicine and helps to minimize healthcare cost. However, a clear contradiction exists between the privacy and security of big data and its widespread usage. In this paper, the focus is on big data with respect to its characteristics, trends, and challenges. Additionally, the risks and benefits associated with data analytics were reviewed.
Vehicles Speed Estimation Model from Video Streams for Automatic Traffic Flow Analysis Systems Arriffin, Maizatul Najihah; Mostafa, Salama A.; Khattak, Umar Farooq; Jaber, Mustafa Musa; Baharum, Zirawani; Defni, -; Gusman, Taufik
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1820

Abstract

Image and video processing have been widely used to provide traffic parameters, which will be used to improve certain areas of traffic operations. This research aims to develop a model for estimating vehicle speed from video streams to support traffic flow analysis (TFA) systems. Subsequently, this paper proposes a vehicle speed estimation model with three main stages of achieving speed estimation: (1) pre-processing, (2) segmentation, and (3) speed detection. The model uses a bilateral filter in the pre-processing strategy to provide free-shadow image quality and sharpen the image. Gaussian filter and active contour are used to detect and track objects of interest in the image. The Pinhole model is used to assess the real distance of the item within the image sequence for speed estimation. Kalman filter and optical flow are used to flatten vehicle speed and acceleration uncertainties. This model is evaluated with a dataset that consists of video recordings of moving vehicles at traffic light junctions on the urban roadway. The average percentage for speed estimation error is 20.86%. The average percentage for accuracy obtained is 79.14%, and the overall average precision of 0.08.