Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pemanfaatan Limbah Kayu Sebagai Baglog Media pembuatan Jamur Tiram: Solusi Kreatif Menuju Ekonomi Produktif di desa Maringgai Huda, Miftahu; Anwar, M. Saidun; Kamil, Mutia; Muazis, Agil; Rohman, Danur; Zulfa Ismi, Dina; Lusiana, Zevi; Salsabila, Aulia; Milasari, Iin; Rofingatul, Putri; Inayah, Lailatul; Azizah, Siti Nur
Educommunity Jurnal Pengabdian Masyarakat Vol. 3 No. 1 (2025)
Publisher : CV. Edutechnium Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.71365/ejpm.v3i1.74

Abstract

Desa Maringgai Kecamatan Labuhan Maringgai Kabupaten Lampung Timur mayoritas penduduknya ialah pengusaha kayu. Di sisi lain, cukup berlimpah limbah yang dihasilkan dan belum dimanfaatkan secara maksimal. Tahapan dalam pemanfaatan limbah serbuk gergaji kayu merupakan tahap awal untuk menghasilkan suatu media tanam jamur (baglog). Langkah awal pembuatan media tanam jamur adalah pemilihan bahan baku berupa serbuk gergaji yang baik. Serbuk gergaji yang dapat dipakai sebagai bahan pembuatan baglog jamur tiram (media tanam) adalah serbuk gergaji yang tidak mengandung kadar getah yang tinggi dan bukan jenis kayu keras. Dengan adanya pemanfaatan terhadap limbah kayu kedepannya diharapkan limbah kayu semakin berkurang dan dapat mengurangi kerusakan pada alam yang disebabkan oleh pembakaran limbah kayu. Pemanfaatan limbah kayu ini memiliki potensi dapat menunjang kegiatan ekonomi produktif yang nantinya dapat meningkatkan pula nilai serta pendapatan bagi masyarakat sekitar khususnya mitra.
Analisis Evaporasi Awan Cumulonimbus di Lapisan Troposfer serta Potensi Terjadinya Curah Hujan Tinggi di Kabupaten Serang Inayah, Lailatul; Ruhiat, Yayat; M., Yus Rama Denny
Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika Vol 11, No 1 (2025)
Publisher : Universitas Sultan Ageng Tirtayasa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30870/gravity.v11i1.29161

Abstract

Rain occurs after passing through several stages of the process, which becomes a repetitive cycle; the stages passed are evaporation (evaporation), condensation, and precipitation. Clouds are an element that becomes a factor that affects weather changes, and their shape can change depending on the type. The type of cloud that can cause bad weather is the Cumulonimbus cloud. This research aims to review the volume of rainfall in the Serang Regency area, which can be used as material to predict the steps that must be taken to prevent an event. This research uses data from the Geospatial Information Agency and CHIRPS, which is then processed in ArcGIS 10.8 software. And also based on previous research literature. The data obtained is then analyzed in the ArcGIS application by overlaying one data with other data to find the areas that experience high rainfall. It was found that the average high rain occurred in the western region of Serang Regency.
A Histopathology Grading of Breast Cancer Using Visual Geometry Group Method Hyperastuty, A. Santika; Setiawan, Fachruddin Ari; Pradana, Dio Alif; Puspitasari, Rahma Ajeng; Inayah, Lailatul; Winarti, Eko
Andalasian International Journal of Applied Science, Engineering and Technology Vol. 5 No. 2 (2025): July 2025
Publisher : LPPM Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/aijaset.v5i02.255

Abstract

Breast cancer continues to rank among the world's leading causes of death for women. Developing successful treatment plans requires a timely and accurate diagnosis. Although histopathological image analysis is still the gold standard for evaluating malignancy, it is prone to inconsistencies and human error. The objective of this research is to use the Visual Geometry Group's (VGG16) deep learning technique to automate the evaluation of breast cancer histology. A collection of breast cancer histopathology images spanning 85 epochs was used to train the VGG16 model, which is well-known for its excellent performance in image classification tasks. For training and testing, the model uses batch sizes of 33 and 64, respectively, and a Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.01. With an F1 score of 0.98, 89.3% training accuracy, and 98% validation accuracy, the experimental findings show excellent performance. These results indicate that VGG16 is highly effective in distinguishing between different tissue grades of breast cancer. Despite its high performance, challenges remain regarding computational efficiency and interpretability for clinical use. Future research should focus on exploring lightweight architectures, improving model explanations, and validating more diverse and larger datasets to enhance real-world applicability in digital pathology.