Claim Missing Document
Check
Articles

Found 4 Documents
Search

Geological Mapping of the Longkeyang and Surrounding Regions, Bodeh District, Pemalang Regency, Central Java Firmansyah, Irwan; Candra, Adi; Widiatmoko, Fajar Rizki
Journal of Earth and Marine Technology (JEMT) Vol 2, No 1 (2021)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2021.v2i1.2166

Abstract

Geological mapping is one of the important things as part of a field study to obtain geological knowledge. This is due to the need for a geologist who is required to be able to understand the geological conditions of an area, one of which is by conducting mapping activities in the field. In conducting this research activity, it is divided into two stages, namely the field stage and the laboratory stage. The purpose of this research is to determine the characteristics and geological conditions, identify resource potentials and potential geological disasters in the research area. Based on the analysis, it was found that the geomorphological units of the study area were divided into 4 (four), namely the Mount Ketos Homocline Hills Unit, the Polaga River Anticline Valley Unit, the Sarangkadu Cycline Hills Unit, and the Mount Lanji Intrusion Hills Unit. The geology of the study area consists of three rock units in order from oldest to youngest, namely the claystone-sandstone unit and the sandstone-claystone unit and the diorite intrusion unit. The geological structure of the pinnacle area is in the form of folds and faults, namely, Polaga River Anticlines, Sarangkadu Synclines, Polaga River Right Shear Fault, Polaga River Left Shear Fault. The geological history of the study area begins with the deposition of claystone-sandstone units during the Middle Miocene in the Upper Bathyal environment. Furthermore, after the claystone-sandstone units were deposited, during the Middle Miocene – Late Miocene in the Deep Neuritic environment, sandstone-claystone units were deposited with a turbidity deposition mechanism. As well as the geological resource potential of the research area in the form of utilization of river deposits in the form of chunks of igneous rock, river sand deposits and indications of the presence of gold. Meanwhile, the potential for geological disasters in the form of landslides.
Geological Mapping of Gunungbatu and Surrounding Areas, Bodeh District, Pemalang Regency, Central Java Widiatmoko, Fajar Rizki; Aziz, Mochammad; Firmansyah, Irwan
Journal of Earth and Marine Technology (JEMT) Vol 2, No 1 (2021)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2021.v2i1.2167

Abstract

Mapping is the activity of collecting data from an area to be mapped, in the context of geology mapping means collecting data that includes descriptions of rocks, rock structures, rock positions, structure measurements (plunge/trend, pitch, microfold), rock thickness measurements, rock sampling and sketches. landscape, covering an area to be mapped. Research in the area of Gunungbatu and its surroundings, Bodeh District, Pemalang Regency, Central Java Province with the aim of knowing and knowing that it is in the research area by reconstructing the history of formation or geomorphological history, merely tectonic history in space and time, reconstructing geological history based on micropaleontological analysis. Based on the analysis carried out, it was found that the geomorphological units of the study area were divided into 5, namely the Gunungbatu Syncline Hills Unit, the Kali Bodas Anticline Valley Unit, the Girimulya Syncline Hills Unit, the Cenggiri Homocline Hills Unit and the Kebubung Homocline Valley Unit. The geology of the study area consists of two unofficial rock units in order from oldest to youngest, namely the claystone-sandstone unit and the sandstone-claystone unit. The geological structures of the pinpoint folds and faults are Mount Ketos Syncline, Kali Bodas Anticline, Gapura Syncline, Pertapan Igir Syncline, Cenggiri River Rising Fault, Kebubung Dextral Fault, and Girimulya Dextral Fault. The geological history of the research area begins with the book Unit of Claystone in the Middle Miocene Environment in Upper Bathyal. Furthermore, after the claystone-sandstone units were deposited, during the Middle Miocene – Late Miocene in the Deep Neritic Environment, the sandstone-claystone units were deposited with a turbidite mechanism. As well as the geological resource potential of the research area in the form of river utilization in the form of chunks of igneous rock, river sand deposits and gold seepage. Meanwhile, the potential for geological disasters in the form of landslides.
The detailed geological investigation in Kadidia geothermal field and surrounding areas, Nokilalaki District, Sigi Regency, Central Sulawesi Province Firmansyah, Irwan; Siswandi, Siswandi; Iswahyudi, Sachrul; Hermawan, Dudi; Mustofa, Santia Ardi
Journal of Earth and Marine Technology (JEMT) Vol 2, No 2 (2022)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2022.v2i2.2870

Abstract

The need for alternative energy other than fossil energy is felt to be increasingly urgent for the fulfillment of domestic electrical energy. In meeting the demand for electricity, the government needs to investigate alternative geothermal energy, to find out the potential for geothermal energy to provide electricity. The realization of this policy is that the government conducts an integrated geothermal investigation to find prospective geothermal areas that can be developed as electric power. Nokilalaki District, Sigi Regency, Central Sulawesi Province is one area that has geothermal potential in Indonesia. The Kadidia geothermal area, Sigi Regency, Central Sulawesi Province is one of the volcanic geothermal fields that have good potential and needs to be investigated further, especially on geological conditions that affect the presence of geothermal energy. The research method used is the method of analyzing the results of field observations. From the observations, it can be concluded that the geomorphology of the research area is divided into Tongoa hills, Nokilalaki Granite Intrusions, Kamamora Hills, and Kadidia Alluvial Plains. The stratigraphy of the study area from old to young consists of Breccia, Sandstone, Granite Intrusion A, Granite Intrusion B, Granite Intrusion C, and Alluvial Plain. The geological structure of the study area consists of the Kamamora sinistral shear fault and the Kadidia dextral shear fault. The geological history of the study area begins in the early Miocene which is the beginning of the movement of the Palu - Koro fault.
Geothermal Temperature Slope at the KDD – 1 Well, Kadidia and Surrounding Areas, Nokilalaki, Sigi, Central Sulawesi Province Firmansyah, Irwan; Siswandi, Siswandi; Iswahyudi, Sachrul; Hermawan, Dudi; Mustofa, Santia Ardi
Journal of Earth and Marine Technology (JEMT) Vol 2, No 2 (2022)
Publisher : Lembaga Penelititan dan Pengabdian kepada Masyarakat - Institut Teknologi Adhi Tama Suraba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jemt.2022.v2i2.2873

Abstract

The need for alternative energy other than fossil energy is felt to be increasingly urgent for the fulfillment of domestic electrical energy. In meeting the demand for electricity, the government needs to investigate alternative geothermal energy, to find out the potential for geothermal energy to provide electricity. The realization of this policy is that the government conducts an integrated geothermal investigation to find prospective geothermal areas that can be developed as electric power. Nokilalaki District, Sigi Regency, Central Sulawesi Province is one area that has geothermal potential in Indonesia. The Kadidia geothermal area, Sigi Regency, Central Sulawesi Province is one of the volcanic geothermal fields that have good potential and needs to be investigated further, especially on geological conditions that affect the presence of geothermal energy. The research method used is the method of analyzing the results of field observations. From the observations, it was concluded that the KDD-1 temperature gradient well had a final depth of 703.85 m. The formation temperature is 96.87 ºC at a depth of 700-meters with an average slope value of 12.8 ºC/100 meters, and the estimated temperature at a depth of 1500 m (estimated top reservoir) is 220 ºC.