Claim Missing Document
Check
Articles

Found 7 Documents
Search

STUDI ETNOMATEMATIKA: EKSPLORASI KONSEP-KONSEP TEOREMA PYTHAGORAS PADA BUDAYA BANTEN Dinar Nirmalasari; Pinta Deniyanti Sampoerno; Makmuri Makmuri
Teorema: Teori dan Riset Matematika Vol 6, No 2 (2021): September
Publisher : Universitas Galuh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25157/teorema.v6i2.5472

Abstract

Penelitian ini mengaitkan konsep Pythagoras dengan Budaya Banten. Budaya Banten memiliki unsur etnomatematika terutama konsep Pythagoras. Konsep Pythagoras dalam budaya Banten meliputi konstruksi bangunan atau ukuran yang memiliki aturan Pythagoras. Penelusuran keteraturan matematis pada budaya Banten dapat menjadi kajian yang dapat diintegrasikan dalam pembelajaran matematika pada materi Teorema Pythagoras. Tujuan penelitian ini mengeksplorasi budaya Banten yaitu atap rumah adat baduy, motif batik leuit cikadu pandeglang, gapura khas banten, gapura masjid kasunyatan, totopong baduy, ulur tenun baduy, dan atap Masjid Agung Banten terhadap konsep Pythagoras. Metode penelitian menggunakan pendekatan etnografi dengan mengintegrasikan kajian teoritis dan empiris yang diperoleh dari kegiatan observasi dan wawancara sebagai alat pengumpul data. Hasil penelitian menunjukan bahwa kebudayaan Banten memiliki berbagai konsep Pythagoras yaitu konsep Teorema Pythagoras pada segitiga siku-siku, Teorema Pythagoras, menentukan jenis segitiga berdasarkan sisi yang diketahui, triple Pythagoras, perbandingan sisi-sisi pada segitiga siku-siku sama kaki. Perbandingan sisi-sisi pada segitiga siku-siku dengan sudut 30°, 60°, dan 90°. Dengan kajian etnomatematika terhadap budaya Banten sebagai bentuk penguatan pendidikan karakter pada nilai nasionalis dengan memiliki kompetensi sikap kecintaan terhadap budayanya sendiri dapat tumbuh dan dimiliki oleh siswa sebagai jati diri bangsa. Kata kunci:  Budaya Banten, matematika, pythagoras
ETNOMATEMATIKA PADA BATIK SIDOMUKTI INDRAMAYU DALAM PEMBUKTIAN PHYTAGORAS Nirmalasari, Dinar; Rofiroh, Rofiroh; Mahuda, Isnaini
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 6 No. 1 (2025): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v6i1.804

Abstract

Batik is a combination of art and technology. Batik has various types and motifs that vary depending on the region. In Indramayu itself there are several types of batik, one of which is batik with the Sidomukti motif. Ethnomathematics is a science that studies the relationship between mathematics and culture. Through this knowledge, various mathematical aspects can be studied that can be found in Sidomukti batik motifs. The aim of this research is to find out the Sidomukti batik motif pattern when linked to the Pythagorean theorem and can be used as an example to convey material proving the Pythagorean Theorem in schools. The research used is qualitative descriptive research with the research object being batik cloth with sidomukti motifs. Mathematically, the sidomukti motif can be approximated by flat rectangular and triangular shapes. From the research, the results showed that there is a mathematical aspect, namely the proof of the Pythagorean Theorem in the Indramayu cultural element, namely the sidomukti batik motif.
EFEKTIVITAS E-MODUL AJAR BERBASIS PEMECAHAN MASALAH UNTUK MENINGKATKAN KEMAMPUAN MAHASISWA PADA MATA KULIAH TEORI BILANGAN Rofiroh, Rofiroh; Nirmalasari, Dinar
Cakrawala Pedagogik Vol 9 No 1 (2025): Cakrawala Pedagogik
Publisher : Sekolah Tinggi Keguruan dan Pendidikan Syekh Manshur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51499/cp.v9i1.730

Abstract

In the era of digitalization, the world of education is innovating in developing learning methods in the classroom. One of the innovations is creating digital-based learning media such as e-teaching modules. It is hoped that this e-module can help and facilitate students in solving problems, especially in number theory courses. The aim of this research is to determine students' abilities in number theory courses. The research used was quantitative research with the research object being 37 first semester students of class E majoring in mathematics education, FKIP, Sultan Ageng Tirtayasa University. The test results using the Wilcoxon non-parametric test obtained Asymp.Sig.0.000<0.05. This means that there is a significant difference between the pre-test before using the problem solving based teaching e-module and the post-test after using the problem solving based teaching e-module.
Efektivitas Pembelajaran dengan Model Peer-Led Team Learning untuk Meningkatkan Kemampuan Mahasiswa pada Mata Kuliah Aljabar Linier Nirmalasari, Dinar; Wulandari, Juwita Kirana; Yuniar, Avianti Permata
JURNAL JENDELA PENDIDIKAN Vol. 5 No. 03 (2025): Jurnal Jendela Pendidikan: Edisi Agustus 2025
Publisher : CV. Jendela Edukasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57008/jjp.v5i03.1705

Abstract

Penelitian ini dimaksudkan untuk menganalisis efektivitas penerapan model pembelajaran Peer-Led Team Learning (PLTL) dalam meningkatkan kompetensi mahasiswa pada mata kuliah Aljabar Linier. Latar belakang penelitian didasarkan pada rendahnya partisipasi aktif dan pemahaman konsep mahasiswa terhadap materi Aljabar Linier yang bersifat abstrak. Penelitian ini dilakukan dengan pendekatan kuantitatif menggunakan desain kuasi-eksperimental. Subjek penelitian terdiri atas dua kelas yang memperoleh perlakuan berbeda, yaitu pembelajaran konvensional dan model Peer-Led Team Learning (PLTL). Tes kemampuan matematis digunakan sebagai instrumen penelitian dan diberikan sebelum serta sesudah perlakuan. Hasil analisis data menunjukkan adanya peningkatan signifikan pada kemampuan mahasiswa yang mengikuti pembelajaran dengan model PLTL. Dari dua kelas yang dijadikan penelitian sebagai kelas kontrol dan eksperimen, rata-rata nilai pre-test post-test meningkat di kedua kelas. Kelas eksperimen mengalami peningkatan yang lebih tinggi yakni dari 12,39 menjadi 73,33 dengan rata-rata N-Gain 0,70. Sementara kelas kontrol memperoleh rata-rata skor N-Gain 0,65. Pada hasil mean rank, kelas eksperimen memiliki rata-rata peringkat sebesar 44,64, sedangkan kelas kontrol sebesar 34,36. Temuan ini sejalan dengan hasil penelitian sebelumnya yang menunjukkan bahwa PLTL efektif dalam meningkatkan pemahaman konsep, kepercayaan diri, keterampilan komunikasi, dan kepemimpinan mahasiswa. Penelitian ini merekomendasikan penerapan model PLTL sebagai strategi inovatif dan kolaboratif dalam pembelajaran matematika di perguruan tinggi, serta membuka peluang bagi penelitian lanjutan terkait adaptasi PLTL pada mata kuliah lainnya.
Ethnomathematical Exploration of Two-Dimensional Shapes in Banten Batik Motifs Nirmalasari, Dinar; Rofiroh, Rofiroh
Jurnal Pendidikan Matematika (JUPITEK) Vol 8 No 2 (2025): in Progress
Publisher : Program Studi Pendidikan Matematika FKIP Universitas Pattimura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/jupitekvol8iss2pp90-105

Abstract

Indonesia is currently implementing an independent curriculum that emphasizes contextual, differentiated, and learner-centered instruction grounded in students’ cultural environments. Integrating local heritage, such as batik, aligns with these principles and allows students to recognize mathematics as part of their everyday experiences rather than a detached school subject. Typical Banten batik, therefore, holds strong potential as a medium for teaching geometry. This study aims to identify and analyze the plane shapes embedded in Banten batik motifs. A descriptive qualitative method with an ethnographic approach was employed. Data were collected through literature review, interviews, and direct observations of Banten batik, and were analyzed using domain and taxonomic techniques to classify and interpret geometric features. The findings show that Banten batik motifs contain plane geometric elements that represent mathematical concepts naturally embedded in local culture, demonstrating clear connections with flat shapes. The study highlights the significant potential of ethnomathematics-based learning, enabling teachers to connect formal mathematics with students’ cultural knowledge, promote meaningful learning, and strengthen students’ cultural identity and pride.
Developing Transparent Concrete Geometry Media Using the 4D Model for Junior High School Surface Area Learning Wulandari, Juwita Kirana; Aristi, Jennya Zahra; Putri, Adelia; Nirmalasari, Dinar
Journal of Mathematics Instruction, Social Research and Opinion Vol. 4 No. 4 (2025): December
Publisher : MASI Mandiri Edukasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58421/misro.v4i4.815

Abstract

This study aims to develop transparent concrete learning media for spatial geometry and evaluate its feasibility, practicality, and effectiveness in supporting students’ understanding of surface area concepts. This development applies the 4D model (Definition, Design, Development, and Dissemination) and involves one media expert, one subject matter expert, and 30 ninth-grade students during the limited dissemination phase. The uniqueness of this study lies in the use of a transparent acrylic model that allows students to clearly observe the relationships among planes, edges, and angles, providing a concrete, visually accessible representation of geometric structures. The research procedure included a student needs analysis, prototype design and production, product validation through expert review, and limited classroom deployment supported by pre- and post-test assessments. Media experts rated the product at 80% (acceptable), while subject matter experts rated it at 87.5% (highly acceptable). Students’ conceptual understanding improved significantly, with the average pre-test score of 81.43 increasing to 100 on the post-test, resulting in an N-Gain of 1.00 (very high). The student response rate reached 66.9% (very practical). These findings indicate that transparent concrete geometric media are feasible, practical, and effective, offering pedagogical advantages for enhancing students’ conceptual understanding through realistic, transparent geometric representations.
Effectiveness of Transparent Concrete Media for Geometry Learning in Improving Junior High School Students’ Understanding of Surface Area Nirmalasari, Dinar; Hidayah, Halvitri Nurul; Salsabila, Claudia
Journal of General Education and Humanities Vol. 5 No. 1 (2026): February
Publisher : MASI Mandiri Edukasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58421/gehu.v5i1.813

Abstract

Mastery of the concept of surface area in solid figures remains a challenge for junior high school students, particularly in linking three-dimensional representations with their corresponding nets. This study aimed to examine the effectiveness of transparent solid figures as concrete learning media in improving students’ understanding of surface area concepts. Conducted at SMPIT Al Mubarok, Serang City, during the 2025/2026 academic year, the study employed a quantitative method using a one-group pretest–posttest experimental design. Thirty ninth-grade students were selected through accidental sampling based on accessibility and availability. A concept comprehension test was administered before and after the treatment, and data were analyzed descriptively and inferentially. Results indicated that students’ surface-area comprehension improved significantly following the use of transparent concrete instructional media. The mean pretest score of 81.43 increased to 100 on the posttest. The Wilcoxon Signed-Rank Test revealed a significance value of 0.000 (<0.05), and the N-Gain score of 1.00 was categorized as high, confirming that transparent solid media were highly effective in enhancing students’ conceptual understanding of surface area.