Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : SmartComp

Perbandingan Prediksi Harga Saham Dengan Menggunakan LSTM GRU Dengan Transformer Idham Idham; Muhammad Ghudafa Taufik Akbar; Supriadi Panggabean; Mohamad Noor
Smart Comp :Jurnalnya Orang Pintar Komputer Vol 11, No 1 (2022): Smart Comp: Jurnalnya Orang Pintar Komputer
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/smartcomp.v11i1.3185

Abstract

Saham adalah sebuah bukti kepemilikan nilai sebuah perusahaan, artinya pemilik saham adalah pemilik perusahaan . Semakin besar saham yang dimiliki, maka semakin besar kekuasaannya di perusahaan tersebut. Faktor yang terjadi sekarang dalam sektor pasar saham yaitu adanya dampak dari virus corona terhadap indeks harga saham dan arus dana asing ke pasar saham. Maka sangat perlu untuk dilakukan prediksi sentiment analysis pandemi corona terhadap sektor pasar saham untuk melihat bagaimana perbandingan pergerakan IHSG di Indonesia sebelum terjadi pandemi dan pada saat terjadi pandemi Covid-19. Metode yang digunakan untuk prediksi analysis sentimen dengan index harga saham Indonesia ini menggunakan transformers dengan fitur bag of word , TF- IDF dan word embedding. Dari hasil prediksi sebelum menggunakan metode transformers pada LSTM,dan GRU didapatkan rata-rata pada LSTM Performance akurasi 0,394 dan GRU 0,216[1]. Algoritma yang yang digunakan dalam model ini adalah Long short-term memory (LSTM), dan Gated Recurrent Unit (GRU), sedangkan untuk mendapatkan hasil word embedding menggunakan Vector space model. Terdapat 1989 baris data dan 27 atribut, sedangkan untuk akurasi yang dihasilkan setelah melakukan iterasi beberapa kali mendapatkan hasil yang signifikan, performance yang dihasilkan adalah semakin mendekati akurasi yang cukup tinggi. Berdasarkan hasil eksprimen perbandingan performance akurasi antara LSTM dan GRU terhadap penggunaan Transformers, maka terlihat lebih baik performance akurasinya setelah menggunakan transformers pada ketiga model tersebut.Kata kunci: Transformer, GRU, LSTM, TF-IDF, word embedding, bag of word..