Claim Missing Document
Check
Articles

Found 5 Documents
Search

ASPEK HUKUM DALAM PENERAPAN PRINSIP FULL DISCLOSURE DI PASAR MODAL Zaenah
Lex Journal: Kajian Hukum & Keadilan Vol 1 No 2 (2017): December
Publisher : Faculty of Law, University of Dr. Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (316.265 KB) | DOI: 10.25139/lex.v1i2.560

Abstract

Public Offering, known as Initial Public Offer (IPO), as ameans of fund raising with investment model, which is used as a means of expanding the business or to strengthen the company's finances without relying on debt to other parties. On a broad scale, as in the consideration of the formation of Capital Market Law No. 8 of 1995, that capital market has a strategic position to support the achievement of the national development objectives of creating a fair and prosperous society through one of the capital market activities namely the Public Offering of shares as a source of financing business field and investment means for the community. The law has been covering and regulating all capital market activities to create legal certainty for all parties involved in the capital market, through the obligation to apply full disclousure principle for companies conducting their public offerings that have implications to the IPO’s legality. Procedures and legal aspects in the application of the full disclousure principle will be explained in this paper, and expected to be an useful knowledge for anyone who needs information about IPO.
Penentuan Pusat Awal Klaster Algoritma K-Means Untuk Pengelompokan Kabupaten/Kota Di Jawa Timur Berdasarkan Tingkat Kemiskinan Zilfi, Elok Maria; Istiawan, Deden; Ngatimin; Zaenah; Nahdluddin
Journal of Applied Statistics and Data Mining Vol. 2 No. 1 (2021): Journal Applied Statistics and Data Mining
Publisher : Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63229/jasdm.v2i1.18

Abstract

Kemiskinan merupakan masalah klasik yang umum dan bersifat multidimensional serta sering dialami oleh berbagai negara didunia. Kemiskinan dipandang sebagai ketidakmampuan dari segi ekonomi untuk memenuhi kebutuhan dasar yaitu makanan dan bukan makanan yang mana diukur dari sisi pengeluaran. Kemiskinan menjadi masalah fenomenal yang mana dialami oleh berbagai negara. Indonesia sendiri merupakan salah satu negara yang mengalami masalah kemiskinan. Negara Indonesia memiliki ribuan pulau, dan pulau dengan angka kemiskinan tertinggi adalah Pulau Jawa. Sedangkan Jawa Timur merupakan provinsi dengan jumlah penduduk miskin tertinggi di Pulau Jawa dengan total penduduk miskin sebesar 4.617,01 ribu jiwa, selain itu Jawa Timur juga memiliki kesenjangan sosial yang tinggi. Dalam hal ini mempelajari masalah kemiskinan sangatlah penting, dengan tujuan membantu pemerintah menentukan arah kebijakan dalam menanggulangi kemiskinan. Untuk menunjang keberhasilan pelaksanaan program pembangunan terutama yang bersangkutan dengan penanggulangan kemiskinan di Provinsi Jawa Timur diperlukan suatu penelitian yang dapat mengelompokkan kabupaten/kota yang mempunyai ciri-ciri atau karakteristik kemiskinan yang hampir sama atau homogen. Sehingga pada penelitian ini, peneliti menggunakan metode GK Algorithm dalam mengatasi kekurangan pada metode K-Means dalam pemetaan kabupaten/kota di Jawa Timur berdasarkan tingkat kemiskinan. Dimana jenis data yang digunakan adalah data sekunder yang diambil dari BPS Provinsi Jawa Timur pada tahun 2016 yang diunduh pada website https://jatim.bps.go.id/. Dengan variabel yang digunakan adalah angka harapan hidup, angka kematian bayi, angka harapan lama sekolah, angka melek huruf, fasilitas BAB tidak ada jamban, sumber penerangan listrik, sumber air tidak dilindungi, bahan bakar memasak non gas, dan rata-rata luas lantai. Kemudian data dianalisis dengan menggunakan beberapa tahap yaitu: analisa permasalahan, pengumpulan data, metode usulan, dan eksperimen pengujian. Setelah dianalisis kemudian diperoleh kesimpulan bahwa kemiskinan di Jawa Timur terbentuk menjadi 3 klaster dan didapatkan bahwa GK-Algorithm lebih baik daripada algoritma K-Means.
Penerapan Algoritma C4.5 untuk Klasifikasi Lahan Kritis Kabupaten Grobogan Arif Arrahman, Malik; Istiawan, Deden; Yogi Prayogi, Sukmono; Zaenah; Adilah Ahmad, Muna
Journal of Applied Statistics and Data Mining Vol. 2 No. 2 (2021): Journal Applied Statistics and Data Mining
Publisher : Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63229/jasdm.v2i2.20

Abstract

Penentuan lahan kritis dilakukan dengan pembagian 3 kawasan yaitu kawasan budidaya pertanian, kawasan hutan lindung dan kawasan lindung di luar kawasan hutan. Laju kerusakan hutan dan lahan kritis di Indonesia tercatat telah mencapai 27,2 juta hektar di tahun 2014. Untuk mengatasi lahan kritis serta memulihkan, mempertahankan dan meningkatkan fungsi hutan dan lahan, Kementerian Kehutanan mencanangkan kegiatan Rehabilitasi Hutan dan Lahan (RHL). Berdasarkan laporan Badan Pusat Statistik tahun 2016 Kabupaten Grobogan menempati urutan pertama di Provinsi Jawa Tengah yang memiliki luas lahan kritis diluar kawasan hutan sebesar 203.131,10 ha. Untuk mengatasi masalah tersebut peneliti menggunakan pendekatan data mining. Data mining mempunyai lima peran utama yaitu estimasi, prediksi, klasifikasi, klaster dan asosiasi. Klasifikasi merupakan salah satu teknik yang terdapat pada data mining. Tujuan dari teknik klasifikasi data mining adalah untuk memprediksi kelas target secara akurat dengan menggunakan variabel-variabel terkait. Dalam kasus ini peneliti menggunakan algorima C4.5 akan digunakan untuk mengklasifikasikan dan menghitung tingkat akurasi data BPDAS pemali jratun Kabupaten Grobogan untuk mengetahui kondisi kekritisan daerah sub DAS. Metode penelitian yang digunakan meliputi beberapa tahap diantaranya analisa masalah, pengumpulan data, metode usulan, serta eksperimen dan juga pengujian. Data yang didapatkan kemudian dianalisis menggunakan algoritma C4.5. Setelah dianalisis diperoleh kesimpulan bahwa Klasifikasi lahan kritis pada Kabupaten Grobogan dapat diterapkan dengan baik pada Algoritma C4.5, dan data mendapatkan hasil 51,89% kualitas lahan yang dinyatakan tidak kritis. Dan dapat disimpulkan bahwa algoritma C4.5 memiliki akurasi yaitu sebesar 90,71% artinya Algoritma C4.5 dapat memprediksi benar sesuai dengan kondisi aktual. Selain itu, nilai F-Measure juga terlihat bahwa C4.5 memiliki nilai sebesar 91,68 artinya Algoritma C4.5 mampu mengidentifikasi kejadian dengan tepat pada kelas true positif.
Penerapan Algoritma Self Organizing Maps untuk Pengelompokkan Penyandang Masalah Kesejahteraan Sosial di Provinsi Jawa Tengah Chaerul Iqbal , Ilham; Istiawan, Deden; Ngatimin; Zaenah; Huda, Nurul
Journal of Applied Statistics and Data Mining Vol. 2 No. 2 (2021): Journal Applied Statistics and Data Mining
Publisher : Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63229/jasdm.v2i2.21

Abstract

Penyandang Masalah Kesejahteraan Sosial (PMKS) adalah seseorang atau keluarga karena suatu hambatan, kesulitan atau gangguan tidak dapat melaksanakan fungsi sosialnya dan karenanya tidak dapat menjalin hubungan yang serasi dan kreatif dengan lingkungannya sehingga tidak dapat memenuhi kebutuhan hidupnya (jasmani, rohani, sosial) secara memadai dan wajar. Berdasarkan data penyandang masalah kesejahteraan sosial (PMKS) di Dinas Sosial Provinsi Jawa Tengah, menampilkan tiap daerah memiliki jumlah yang bervariasi dari 26 indikator tersebut. Untuk itu diperlukan pengelompokkan, supaya diketahui karakteristik dari tiap kota atau kabupaten yang memiliki jumlah yang banyak maupun sedikit, oleh karena itu dibutuhkan metode untuk memudahkan dalam pengelompokkan. Data cenderung berdimensi tinggi daripada umumnya dan memiliki atribut lebih dari sepuluh. Sehingga pada penelitian ini menggunakan metode algoritma Self Organizing Maps (SOM) karena efektif untuk visualisasi data berdimensi tinggi. Penelitian ini memperoleh bahwa Kabupaten atau Kota di Provinsi Jawa Tengah yang tidak sejahtera yaitu Kabupaten Purbalingga dan Kabupaten Cilacap. Hasil pengelompokkan Kabupaten/Kota di Jawa Tengah menjadi 3 cluster dimana cluster 1 terdiri dari 4 daerah dikategorikan cukup sejahtera, cluster 2 terdiri dari 13 daerah dikategorikan tidak sejahtera, dan cluster 3 terdiri dari 18 daerah dikategorikan sejahtera.
PENGELOMPOKAN TINGKAT KEMISKINAN KABUPATEN/KOTA DI PROVINSI JAWA TIMUR MENGUNAKAN ALGORITMA K-MEANS++ Chintya Devi Panglipuring Sriaji; Zaenah; Istiawan, Deden; Sukmono Yogi Prayogi; Adiyah Mahiruna
Journal of Applied Statistics and Data Mining Vol. 2 No. 2 (2021): Journal Applied Statistics and Data Mining
Publisher : Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63229/jasdm.v2i2.39

Abstract

Menurut Badan Perencanaan dan Pembangungan Daerah (BAPPEDA) kemiskinan adalah kondisi dimana seseorang atau sekelompok orang tidak mampu memenuhi hak-hak dasarnya untuk mempertahankan dan mengembangkan kehidupan yang bermartabat, dimana hak-hak dasar tersebut yaitu terpenuhinya kebutuhan pangan, kesehatan, pendidikan, pekerjaan, perumahan, air bersih, pertanahan, sumber daya alam dan lingkungan hidup, rasa aman dari tindak kekerasan dan hak berpartisipasi dalam sosial politik. Kemiskinan di Indonesia dipengaruhi oleh beberapa faktor, salah satunya ialah tingkat pengangguran yaitu karena tingkat pengangguran yang tinggi menyebabkan rendahnya pendapatan yang selanjutnya memicu munculnya kemiskinan. Dimana provinsi dengan jumlah penduduk miskin terbanyak di Pulau Jawa adalah provinsi Jawa Timur yaitu mencapai 4.332.590 jiwa. Tingkat kemiskinan di Jawa Timur dipengaruhi oleh beberapa faktor diantaranya yaitu Indeks Pembangunan Manusia, Produk Domestik Regional Bruto per kapita, dan belanja publik. Untuk mengelompokan data kemiskinan di Jawa Timur penelitian ini menggunakan metode K-Means++. Dimana data yang digunakan adalah data sekunder yang mana diambil pada BDT TNP2K BAPPEDA JawaTimur pada tahun 2015 yang diunduh pada website http://www.tnp2k.go.id/. Metode penelitian yang digunakan meliputi beberapa tahap diantaranya analisa masalah, pengumpulan data, metode usulan, serta eksperimen dan juga pengujian. Data yang didapatkan kemudian dianalisis menggunakan beberapa langkah yaitu: menentukan jumlah klaster K=2, inisialisasi centroid, menghitung jumlah jarak terdekat, menentukan pusat klaster baru, mengalokasikan data sampai datanya tidak berpindah kelompok. Setelah dianalisis diperoleh kesimpulan bahwa data kemiskinan di Jawa Timur terbentuk menjadi 2 klaster dan juga didapat kesimpulan bahwa K-means++ lebih baik dari pada K-Means.