Claim Missing Document
Check
Articles

Found 3 Documents
Search

Sensitivity Enhancement of Silicon-on-Insulator Multipath Ring Resonator using Gold Nanodisk for Sensor Application Dicky, Gabriel; Taufiqurrahman, Shidqie; Estu, Topik Teguh; Wijayanto, Yusuf Nur; Manurung, Robeth Viktoria; Mahmudin, Dadin; Anshori, Isa; Daud, Pamungkas
Makara Journal of Science Vol. 24, No. 3
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Currently, environmental degradation caused by heavy metals has become a serious concern of many countries. To monitor the concentration of heavy metals in the environment, an in-situ sensor that can measure in real time and has high quality, sensitivity, and flexibility is essential. We proposed a modified multipath ring resonator (MPRR) based on silicon-on-insulator technology with additional gold nanodisk (GND) on top of the ring to increase its sensitivity. To prove the effect of GND on the sensitivity of the modified MPRR, finite-difference time-domain simulations were conducted. Results showed that the average sensitivity of the modified MPRR was 675 nm/RIU, where RIU corresponds to the refractive index unit, higher than that of the unmodified MPRR (171 nm/RIU). Moreover, compared with the single ring structure, the proposed design had better sensitivity. We believe that our proposed approach for the modification of MPRR is suitable for application to optical sensor development.
Circuit Design for Sensor Detection Signal Conditioner Nitrate Content Manurung, Robeth Viktoria; Debataraja, Aminuddin; Hiskia, Hiskia
Makara Journal of Technology Vol. 15, No. 1
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Circuit Design for Sensor Detection Signal Conditioner Nitrate Content. Nitrate is one of macro nutrients very important for agriculture. The availability of nitrate in soil is limited because it is very easy to leaching by rain, therefore nitrate could be contaminated ground water by over-process of fertilizer. This process could also produce inefficiency in agriculture if it happened continuesly without pre-analysis of farm field. The answer those problems, it is need to develop the ion sensor system to measure concentrations of nitrat in soil. The system is consist of nitrate ion sensor device, signal conditioning and data acquisition circuit. The design and fabrications of signal conditioning circuit which integrated into ion nitrate sensor system and will apply for agriculture. This sensor has been used amperometric with three electrodes configuration: working, reference and auxiliarry; the ion senstive membrane has use conductive polymer. The screen printing technique has been choosen to fabricate electrodes and deposition technique for ion sensitive membrane is electropolymerization. The characterization of sensor has been conducted using nitrate standard solution with range of concentration between 1 μM–1 mM. The characterization has shown that sensor has a good response with cureent output between 2.8–4.71 μA, liniearity factor is 99.65% and time response 250 second.
Screen-Printed Carbon Electrode Modified GNPs/ZnO For Electrochemical Biosensing Oktaviani, Atik Dwi; Manurung, Robeth Viktoria
Jurnal Elektronika dan Telekomunikasi Vol 24, No 1 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.593

Abstract

Screen-printed carbon electrodes (SPCEs) modified with graphene nanoplatelets (GNPs) and zinc oxide (ZnO) are widely used in electrochemical sensors due to their enhanced electrochemical properties and biocompatibility. Screen-printed carbon electrodes modified with Graphene nanoplatelets (GNPs) /Zinc oxide (ZnO) nanocomposite are described. Thus, in this study, GNPs/ZnO nanocomposite was synthesized, characterized, and applied to an electrochemical sensor. The formation of GNPs/ZnO nanocomposite was characterized by UV-Vis spectroscopy and scanning electron microscopy. Moreover, SPCE-GNPs/ZnO nanocomposite were characterized using cyclic voltammetry to optimize the concentration of nanocomposite. Then, the analytical performance of the sensor was studied by measuring methylparaben as an organic compound using differential pulse voltammetry (DPV) as a preliminary study before using it for biosensing. The result showed a significant improvement in electrocatalytic activity and reproducibility. The ratio of GNPs/ZnO nanocomposite with a concentration of 1 mg/mL produced the highest current response. Moreover, the detection of methylparaben showed high sensitivity with a limit of detection (LOD) around 9.7 μM, indicating high selectivity and good reproducibility of SPCE-GNPs/ZnO. Hence, the proposed sensor of SPCE-GNPs/ZnO displayed good performance, sensitivity, and reproducibility.