Claim Missing Document
Check
Articles

Found 24 Documents
Search

Pembangunan Aplikasi Kepegawaian untuk SD Islam Terpadu Yasir Di Cipondoh Tangerang Karina Djunaidi; Rosida Nur Aziza; Abdul Haris; Renaldi Bagas P.
Terang Vol 3 No 1 (2020): TERANG : Jurnal Pengabdian Pada Masyarakat Menerangi Negeri
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33322/terang.v3i1.1020

Abstract

SDIT Yasir is one of the schools under the management of the Ibnu Rusydi Islamic Education Foundation in Cipondoh, Tangerang. The school that aspires to create Indonesian young generations that resemble Ibnu Rusydi has several obstacles in carrying out daily teaching and learning activities. One of the issues is the teacher and staff data management. Therefore, the PKM team from the Informatics Engineering Department IT PLN intends to help the Yasir SDIT school by designing a web-based application for handling the employees. The application can be used to manage teacher and employee data, monitor teacher and employee attendances, and provide teacher performance assessments. Keywords: SDIT Yasir, PKM, Employee Information System
Klasifikasi Citra Penyakit Daun Cabai Menggunakan Algoritma Learning Vector Quantization Puji Catur Catur Siswipraptini; Abdul Haris; Winda Novita Sari
Faktor Exacta Vol 16, No 2 (2023)
Publisher : LPPM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/faktorexacta.v16i2.15900

Abstract

The problem often occurs in chili leaves is organisms that interfere with chili plants which can reduce chili production. There are chili plant diseases that are difficult for farmers to recognize by using their eyes and without using tools. The purpose of this study was to produce a model capable of identifying chili leaf diseases based on leaf colour in order to make it easier for farmers to identify chili leaf diseases, especially  Phytophthora, Anthracnose, and Cercospora diseases, using the Learning Vector Quantization (LVQ) classification algorithm. Data was collected in the form of digital images of 30 chili leaves which were processed by resizing and transforming RGB to HSV which then proceeded to Canny Edge detection process with the aim of getting patterns from images of chili leaves. The result of testing LVQ algorithm using a confusion matrix get an accuracy of 80%, the precision value of 80%, recall value of 82%, and f-1 score of 81%. 
Otomatisasi Pada Sistem Penerimaan Siswa Baru (PSB) MAS Annida Al Islamy Duri Kosambi Jakarta Barat Rahma Farah Ningrum; Efy Yosrita; Rosida Nur Aziza; Puji Catur Siswipraptini; Abdul Haris; Karina Djunaidi; Riki Ruli A. Siregar
Terang Vol 5 No 2 (2023): TERANG : Jurnal Pengabdian Pada Masyarakat Menerangi Negeri
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perkembangan TI menuntut setiap orang untuk merubah kebiasaan lama dalam beraktivitas menjadi lebih inovatif. Dunia Pendidikan salah satunya, yang memiliki jenjang dalam pembelajaran harus bisa mengakomodir tuntutan zaman yang semakin cepat. MAS Annida Al Islamy yang berlokasi di Duri Kosambi, Cengkareng Jakarta Barat merupakan sekolah yang mengimplementasikan konsep pendidikan Islam berlandaskan Al-Qur’an dan As Sunnah. Penerapan teknologi informasi dalam bentuk Sistem Informasi Penerimaan Siswa Didik Baru diharapkan menjadi nilai lebih bagi sekolah MAS Annida Al Islamy ini dan dapat meningkatkan kemudahan bagi MAS Annida Al Islamy dari segi pengelolaan administrasi sekolah. Kegiatan pengabdian pada masyarakat akan dilaksanakan oleh Tim dari Fakultas Telematika Energi Institut Teknologi PLN ini merupakan program lanjutan dari kegiatan Pengabdian sebelumnya. Selain menyempurnakan Sistem Informasi yang telah dibangun, kegiatan pengabdian kali ini juga akan menyelenggarakan pelatihan bagi guru/staf dalam hal pengelolaan sistem informasi berbasis web. Pemberian pelatihan, pendampingan, manajemen sistem dan bantuan pembuatan sistem yang dibutuhkan mitra akan dilaksanakan selama 10 bulan.
The Use of Artificial Neural Networks to Estimate Reference Evapotranspiration Haris, Abdul; Marimin; Wahjuni, Sri; Setiawan, Budi Indra
Agromet Vol. 39 No. 1 (2025): JUNE 2025
Publisher : PERHIMPI (Indonesian Association of Agricultural Meteorology)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/j.agromet.39.1.1-7

Abstract

Evapotranspiration is defined as the loss of water from soil and vegetation to the atmosphere, driven by weather conditions. It reduces the availability of water for agricultural purposes, which affects the amount of irrigation water, particularly during the dry season. The objective of this paper is to present a comparative analysis of the estimated reference evapotranspiration value based on artificial neural networks (ANN) with backpropagation bias 1 (BP-1) and backpropagation bias 0 (BP-0) architectures. The model was fed with data of air temperature, relative humidity, and solar radiation. The model is utilized to calculate the evapotranspiration using the Hargreaves method as the training data. The performance of ANN model was evaluated using the mean square error (MSE), root mean square error (RMSE), and coefficient determination (R2). Our results showed that both ANN models performed well as indicated by low error (MSE < 0.01) and high R2 (>0.99). Also, we found that air temperature and relative humidity determine the optimal prediction. Further, this proposed model can serve as a reference for other models seeking to determine the most appropriate computational model for evapotranspiration value estimation.