Claim Missing Document
Check
Articles

Found 5 Documents
Search

MODEL MONITORING DAN IDENTIFIKASI PELANGGAR DI JALUR TRANSJAKARTA MENGGUNAKAN LIBRARY TESSERACT OCR PADA RASPBERRY PI 3 MODEL B Abdul Haris; Efy Yosrita; Randi Adrika Putra
Jurnal Manajemen Informatika (JAMIKA) Vol 7 No 2 (2017): Jurnal Manajemen Informatika (JAMIKA)
Publisher : Program Studi Manajemen Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1476.018 KB) | DOI: 10.34010/jamika.v7i2.620

Abstract

TransJakarta Bus Lane is a special lane that is only passed by TransJakarta bus and is not allowed for other riders entering and passing the lane. But by reason of avoiding congestion, some riders break through the Transjakarta bus lane. This has distrubed Transjakarta bus travel schedule. Several attempts have been made by the government to prevent riders from entering TransJakarta route by installing 50 cm separator in several corridors, making Moveable concrete barriere and since Monday, 25 Noveber 2013 has been applied a maximum fine of Rp 500,000 for both the two- and four-wheeled vehicles or more, entering into a special line of TransJakarta bus or busway lane refers to article 287, Law No. 22 of 2009. The purpose of this study is to monitor in real time the rider who commits a violation or breaks through TransJakarta bus lane. The monitoring system is built in the form of hardware model consisting of Raspberry Pi 3 Model B, ultrasonic sensor HC-SR04, webcamera, and software in the form of website applications. Data processing vehicle license plate number using tesseract ocr library on raspberry. When the hardware model is turned on the ultrasonic sensor HC-SR04 detects the distance of the vehicle object, at a distance of ≤ 10 cm webcamera shoots the vehicle license plate model. Images taken by webcamera processed by raspberry using tesseract ocr library through threshold process so it can be read. The results is displayed on the website application so that it can known the identity of the violator.
Perancangan Aplikasi Pembelian Air Minum Isi Ulang Menggunakan QR Code Berbasis Android Syamsul Syamsul; Rosida Nur Aziza; Efy Yosrita; Rahma Farah Ningrum
PETIR Vol 15 No 1 (2022): PETIR (Jurnal Pengkajian Dan Penerapan Teknik Informatika)
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33322/petir.v15i1.1465

Abstract

Tujuan penelitian ini untuk mengembangkan sebuah aplikasi transaksi pembelian air minum isi ulang otomatis berbasis Android. Hal ini di motivasi berdasarkan kebutuhan masyarakat pengguna botol air minum isi ulang (tumbler), yang kesulitan untuk mengisi kembali isi tumblernya ketika berada di area publk seperti stasiun kereta api, bandara, terminal bis, dll. Hal ini mengakibatkan pengguna tumbler tetap mengkonsumsi minuman dengan kemasan sekali pakai, sehingga program pengurangan sampah plastic kurang efektif. Hasil penelitian berupa aplikasi yang menrapakan kode QR untuk pemanggilan aplikasi Android. Pengguna mendatangi terminal, semacam vending machine, dan melakukan transaksi pembelian air minum isi ulang melalui aplikasi di telepon selulernya, dimulai dari pemilihan volume sampai dengan metode pembayaran
Teknologi Content Management System (CMS) Dinamis untuk Pengembangan Aplikasi Penerimaan Siswa Baru (PSB) SDIT Yasir Cipondoh Rahma Farah Ningrum; Rosida Nur Aziza; Puji Catur Siswipraptini; Abdul Haris; Karina Djunaidi; Riki Ruli A. Siregar; Efy Yosrita
Terang Vol 4 No 2 (2022): TERANG : Jurnal Pengabdian Pada Masyarakat Menerangi Negeri
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33322/terang.v4i2.1466

Abstract

Penerimaan Siswa Baru adalah kegiatan tahunan yang diselenggarakan oleh semua sekolah pada setiap tahun ajaran baru, tidak terkecuali SDIT Yasir yang terletak di Cipondoh Tangerang. Untuk menjangkau para calon siswa yang berdomisili diluar Cipondoh, diperlukan suatu pengembangan aplikasi Penerimaan Siswa Baru yang berbasis web dengan semua fitur standar yang diperlukan untuk memudahkan calon siswa baru dan pihak sekolah. Terdapat beberapa fitur menu diantaranya registrasi, verifikasi pembayaran, jadwal tes dan laporan pendaftaran siswa baru.
PELATIHAN MS. Office Word dan Excel BAGI PERANGKAT DESA & MASYARAKAT DESA CIARUTEUN ILIR BOGOR Max Teja Ajie; Efy Yosrita; Darma Rusjdi; Meilia Nur Indah Susanti; Indrianto Indrianto; Rizqia Cahyaningtyas; Dewi Arianti Wulandari; Herman Bedi Agtriadi
Terang Vol 1 No 1 (2018): TERANG : Jurnal Pengabdian Pada Masyarakat Menerangi Negeri
Publisher : Sekolah Tinggi Teknik - PLN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (448.852 KB) | DOI: 10.33322/terang.v1i1.209

Abstract

terlampir
Analysis of Long Short-Term Memory (LSTM) and Extreme Gradient Boosting (XGBoost) Algorithms to Predict the Number of Airplane Passengers at Makassar Sultan Hasanuddin International Airport : Systematic Literature Review Ainul Idham; Efy Yosrita
Jurnal E-Komtek (Elektro-Komputer-Teknik) Vol 9 No 1 (2025)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/e-komtek.v9i1.2298

Abstract

This study compares the performance of Long Short-Term Memory (LSTM), Extreme Gradient Boosting (XGBoost), and hybrid techniques to forecast the number of aircraft passengers. This analysis was carried out utilizing the Systematic Literature Review (SLR) method and the PRISMA approach. Only 11 of the 44,564 items filtered during the initial round met the inclusion requirements. The LSTM model performed well in capturing time series patterns, however XGBoost was more robust when employed on data with noise and outliers. The hybrid model (LSTM + XGBoost) performed the best, with an average accuracy of 96%, RMSE of 0.015, and MAPE of 2.45%. This demonstrates that the hybrid technique is quite good in predicting the number of airplane passengers, particularly for complicated, dynamic, and seasonal time series data. These findings are recommended for the development of machine learning-based prediction systems for airports.