Claim Missing Document
Check
Articles

Found 2 Documents
Search

Synthesize and Characterization of Pt-supported Co-ZIF for Catalytic Hydrocracking and Hydroisomerization of n-Hexadecane Hidayati, Luthfiana Nurul; Aulia, Fauzan; Napitupulu, Sebastian Ulido; Adhyaksa, Gede Widia Pratama; Dahnum, Deliana
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20117

Abstract

Zeolitic Imidazole Frameworks (ZIFs) are prospective porous materials as catalyst support due to their relatively large surface area, and tunability in size, structure, and porosity. Recent studies have also shown that ZIF is the best candidate for various catalytic redox reactions such as the oxidation of benzyl aromatic hydrocarbons. In this study, the synthesized Pt catalyst supported on Co-ZIF was varied by the organic ligands: imidazole, benzimidazole, and 1-(3-aminopropyl) imidazole, then followed by impregnation of Pt precursor. The catalysts were characterized its physical and chemicals properties such as Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Brunauer Emmet Teller (BET), Temperature-Programmed Desorption (NH3-TPD and CO2-TPD). The prepared catalysts were evaluated for catalytic hydrocracking and hydroisomerization of n-hexadecane in a 100 ml-batch reactor. GC-MS analysis presented that the Pt/ZIF catalyst with imidazole ligands has better performance than others. Hence, the optimization of n-Hexadecane conversion was carried out by the Pt/ZIF-imidazole catalyst varying the amount of metal loading, time and temperature reaction. The results showed that the reaction temperature of 350 ºC using 20 bar H2 for 4 h and the addition of 15 wt% Pt successfully achieved 90.77% conversion and produced the highest yield of isomers and alkanes, 4.04% and 35.75%, respectively. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Catalytic Hydroconversion of Lauric Acid Over Poly(N-vinyl-2-pyrrolidone)-Coated Pd Nanoparticles on ZIF-8 Dahnum, Deliana; Ramadhita, Holanda; Andreas, Andreas; Prasetyo, Joni; Bakti, Aditia Nur; Dang, Huyen Tran
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20114

Abstract

A subclass of Metal-Organic Frameworks, Zeolitic Imidazole Frameworks-8 (ZIF-8) is known as an emerging material that has the characteristic of a large surface area, good thermal stability as well as a high porosity. Instead of having extraordinary properties, ZIF-8 consists of Lewis acid and Lewis base site on its Zn metals and 2-methylimidazole which are the important components for the catalyst. In this study, Pd-Poly(N-vinyl-2-pyrrolidone) coated on ZIF-8 (Pd-PVP@ZIF-8) was synthesized by mixed Pd-PVP solution and ZIF-8 precursors at room temperature. The Pd-PVP solution was varied from 10 to 50 ml to differentiate the Pd concentration in ZIF-8. As-synthesized 50 ml of Pd-PVP on ZIF-8 (50Pd-PVP@ZIF-8) showed catalytic activity in the conversion of 98.6% lauric acid to produce 78.2% of 1-dodecanol at optimum condition 320 °C for 6 h. The synergy between Pd-PVP as metal and ZIF-8 as metal support as well as high dispersion of Pd particles could enhance performance in the conversion of lauric acid. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).