Ariefianto, Rizki Mendung
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design and Implementation of Z-Source Inverter by Simple Boost Control Technique for Laboratory Scale Micro-Hydro Power Plant Application Ariefianto, Rizki Mendung; Aprilianto, Rizky Ajie; Suryoatmojo, Heri; Suwito, Suwito
Jurnal Teknik Elektro Vol 13, No 2 (2021): Jurnal Teknik Elektro
Publisher : Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jte.v13i2.31884

Abstract

In a power plant such as micro-hydropower (MHP), an induction generator (IG) is usually employed to produce electrical power. Therefore, an inverter is needed to deliver it with high efficiency. Z-source inverter (ZSI) has been introduced as a topology with many advantages over conventional inverters. This research aims to investigate the performance of ZSI based simple boost control (SBC) in laboratory-scale MHP systems using a rewinding induction generator. This research has been conducted both from simulations and experiments. Based on the result, the waveform characteristic and value of ZSI are close to the desired design. A shoot-through duty ratio of 17% can reach 60 Vrms output voltage, and this condition has a conversion ratio of about 2.05 times. Also, SBC can significantly reduce the Total Harmonic Distortion (THD). ZSI efficiency has a value of 84.78% at 50% of rating load 100 W and an average value of 80%. Compared to the previous study, the proposed design has more economical with the same component for the higher rating power. Moreover, it has a smoother and entire output waveform of the voltage.
Performance Study of a Humpback Whale Fluke Turbine on Foil Shape Variation Based on Double Multiple Streamtube Model Ariefianto, Rizki Mendung; Hasanah, Rini Nur; Wijono, Wijono; Ridlwan, Asfarur
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 20, No 3 (2023): October
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/kapal.v20i3.53886

Abstract

Exploration of ocean current energy allows for the development of turbines as the primary conversion device. Turbine technologies have been developed in various types, including bio-inspired turbines, such as the humpback whale fluke turbine. In this study, the achievement of a humpback whale fluke turbine is investigated by applying various forms of foil, both symmetric and asymmetric, to obtain the appropriate foil profile. Symmetric foils were represented by NACA 0012, NACA 0018, and NACA 0021, while asymmetric foils were represented by NACA 4312, NACA 4512, and NACA 4712 foils. Simulations were performed using QBlade software, which was developed based on the DMST theory. In general, symmetric foils have a more stable performance than asymmetric foils because they produce a better performance at positive and negative angles of attack. This result is also supported by a review of efficiency and self-starting capability where symmetric foils have significantly higher CP values and positive CQ along the azimuth angle than asymmetric foils. Finally, NACA 0021 foil is recommended for a humpback whale fluke turbine based on its efficiency and self-starting capability.
Assessment of Aerodynamic Performance of Darrieus H-Rotor Wind Turbine Using Realizable k–ε Turbulence Model Approach Ariefianto, Rizki Mendung; Fridayana, Elyas Nur; Wardhana, Wisnu
Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan Vol 21, No 3 (2024): October
Publisher : Department of Naval Architecture - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/kapal.v21i3.65458

Abstract

Wind energy extraction gains more attractiveness as the development of renewable energy progresses and the reduction of fossil fuel usage becomes imperative. Consequently, numerous efforts have been made to enhance turbine performance, such as with the Darrieus H-Rotor type, through numerical studies. Computational Fluid Dynamics (CFD) has become a prevalent tool for these studies, utilizing various approaches, including the eddy viscosity model based on the Boussinesq hypothesis, which underpins turbulence models. This research evaluates the performance of the Darrieus H-Rotor Wind Turbine via 2D CFD modeling using the Realizable k–ε turbulence model. The study also considers simulations with the Double Multiple Streamtube (DMST) model and other turbulence models applied to similar turbine geometries, with experimental data serving as validation benchmarks. Approximately 140,000 cells were utilized in the meshing process to balance simulation duration and the accuracy of the Cp value. The results indicate that the Realizable k–ε turbulence model performs satisfactorily, particularly in producing accurate Cp values in the pre-stall region. The comparison of average Cp values against experimental data across eight tip speed ratio points further supports the effectiveness of the Realizable k–ε turbulence model in simulating the aerodynamic performance of the Darrieus H-Rotor Wind Turbine. Nonetheless, the Realizable k–ε turbulence model fails to enable the Darrieus H-Rotor Wind Turbine to achieve positive Cm values across the entire azimuthal angle at lower tip speed ratios, thus not reaching effective self-starting conditions.
Advancing Fault Diagnosis for Parallel Misalignment Detection in Induction Motors Based on Convolutional Neural Networks Rahmawan, Hanif Adi; Widjianto, Bambang Lelono; Indriawati, Katherin; Ariefianto, Rizki Mendung
Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems) Vol. 17 No. 2 (2023)
Publisher : Faculty of Engineering, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jeeccis.v17i2.1655

Abstract

Maintenance of machines is highly necessary to prolong the operational lifespan of induction motors. Prioritizing preventive measures is crucial in order to prevent more significant damage to the machinery. One of these measures includes detecting abnormalities, such as misalignment, in the motor shaft. This research is aimed to detect the misalignment of induction motor experimentally by varying the coupling between normal and parallel misalignment. The signal readings were analyzed in the frequency domain using Fast Fourier Transform (FFT). The results revealed that in the case of coupling misalignment, a peak appeared at f = 13.5 Hz, whereas in the parallel misalignment condition with a 1 cm misalignment, a peak was found at f+fr = 20 Hz. By utilizing the Convolutional Neural Network (CNN) system, normal and parallel conditions can be detected with an accuracy level of 87.5%.