Claim Missing Document
Check
Articles

Found 4 Documents
Search

HUBUNGAN POLIMORFISME MTHFR c.677C>T DENGAN FUNGSI KOGNITIF PADA PASIEN STROKE ISKEMIK AKUT DI RSUP DR. SARDJITO Haq, Arinal; Gofir, Abdul; Ar Rochmah, Mawaddah; Amelia Nur Vidyanti; Yogik Onky Silvana Wijaya, Yogik Onky Silvana Wijaya
Majalah Kedokteran Neurosains Perhimpunan Dokter Spesialis Saraf Indonesia Vol 40 No 2 (2024): Vol 40 No 2 (2024): Volume 40, No 2 - Maret 2024
Publisher : PERDOSNI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52386/neurona.v40i2.511

Abstract

Introduction: Ischemic stroke is an acute cerebrovascular event with cognitive impairment presents as its prevalent manifestation and complication. Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme in folate metabolism through an integral process of cellular metabolism in DNA, RNA and protein methylation. MTHFR c.677C>T polymorphism is considered an important genetic risk factor for stroke and cognitive dysfunction in some populations. Aim: This study aimed to investigate the association between the MTHFR c.677C>T polymorphism and cognitive function in acute ischemic stroke patients in Dr. Sardjito General Hospital Yogyakarta. Methods: We performed a cross-sectional study in 42 consecutive acute ischemic stroke patients. PCR R-FLP was used to examine MTHFR c.677C>T polymorphism. Cognitive function was determined using MoCA-Ina within 24 hours of each patient’s admission, with score 24 is the cut off for cognitive impairment. Results: Of 42 patients, 12 patients (28.6%) showed MTHFR c.677C>T variant. There were 3 patients (25%) with homozygous variant of MTHFR c.677C>T. Cognitive dysfunction was found in 7 patients (16.7%) with MTHFR c.677C>T variant and 18 patients (42.9%) with wild type MTHFR. However, no significant association was found between MTHFR c.677C>T with cognitive function in acute ischemic stroke patients (p=0.921). Discussion: The frequency of MTHFR c.677C>T polymorphism in this study was 28.6% with a quarter of them showing homozygous variant. There was no association between MTHFR c.677C>T polymorphism with cognitive function in acute ischemic stroke patients.
Integrating Adaptive Sampling with Ensembles Model for Software Defect Prediction Yusuf, Muhammad; Haq, Arinal; Rochimah, Siti
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 2, May 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i2.2191

Abstract

Handling class imbalance is a challenge in software defect prediction. Imbalanced datasets can cause bias in machine learning models, hindering their ability to detect defects. This paper proposes an integration of Adaptive Synthetic Sampling (ADASYN) and ensemble learning methods to improve prediction accuracy. ADASYN enhances the handling of imbalanced data by generating synthetic samples for hard-to-classify instances. At the same time, the ensemble stacking technique leverages the strengths of multiple models to reduce bias and variance. The machine learning models used in this study are K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF). The results demonstrate that ADASYN, combined with ensemble stacking, outperforms the traditional SMOTE technique in most cases. For instance, in the Ant-1.7 dataset, ADASYN achieved a stacking accuracy of 90.60% compared to 89.32% with SMOTE. Similarly, in the Camel-1.6 dataset, ADASYN achieved 91.56%, slightly exceeding SMOTE’s 91.32%. However, SMOTE performed better in simpler models like Decision Tree for certain datasets, highlighting the importance of choosing the appropriate resampling method. Across all datasets, ensemble stacking consistently provided the highest accuracy, benefiting from ADASYN's adaptive resampling strategy. These results underscore the importance of combining advanced sampling methods with ensemble learning techniques to address class imbalance effectively. This approach improves prediction accuracy and provides a practical framework for reliable software defect prediction in real-world scenarios. Future work will explore hybrid techniques and broader evaluations across diverse datasets and classifiers.
ESI-YOLO: Enhancing YOLOv8 with Efficient Multi-Scale Attention and Wise-IoU for X-Ray Security Inspection Haq, Arinal; Suciati, Nanik; Bui, Ngoc Dung
International Journal of Robotics and Control Systems Vol 5, No 3 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i3.1983

Abstract

Security inspection is a priority for preventing threats and criminal activities in public places. X-ray imaging can help with the closed luggages checking process. However, interpreting X-ray images is challenging due to the complexity and diversity of prohibited items. This paper proposes ESI-YOLO, an enhanced YOLOv8-based model for prohibited item detection in X-ray security inspection. The model integrates Efficient Multi-Scale Attention (EMA) and Wise-IoU (WIoU) loss function to improve multi-scale feature representation and detection accuracy. EMA improves multi-scale feature representation, while WIoU enhances bounding box regression, particularly in cluttered and overlapping scenarios. Comprehensive experiments on the CLCXray and PIDray datasets validate the effectiveness of ESI-YOLO. A systematic exploration for the optimal placement of EMA integration on YOLOv8 architecture reveals that the scenario with direct integration in both backbone and neck sections emerges as the most effective configuration without introducing significant computational complexity. Ablation experiments demonstrate the synergistic effect of combining EMA and WIoU in ESI-YOLO, outperforming individual component additions. ESI-YOLO demonstrates notable advancements over the baseline YOLOv8 model, achieving mAP50 improvements of 0.9% on CLCXray and 3.5% on the challenging hidden subset of PIDray, with a computational cost of 8.4 GFLOPs. Compared to other nano-sized models, ESI-YOLO exhibits enhanced accuracy while maintaining computational efficiency, making it a promising solution for practical X-ray security inspection systems.
Implementasi Moderasi Beragama melalui Lomba Mading di Lokasi KKM MTs Al-Ma'arif 01 Singosari Rizky, Alfi Nur Nadiva Soetam; Ramadani, Saviestya Dyan; Hanif, Iqbal; Amanah, Fina Sabila; Adawiyah, Nafisatul; Haq, Arinal; Faridah, Siti
Jumat Keagamaan: Jurnal Pengabdian Masyarakat Vol. 5 No. 2 (2024): Agustus
Publisher : LPPM Universitas KH. A. Wahab Hasbullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32764/abdimasagama.v5i2.4573

Abstract

Di era masa kini, penting bagi generasi muda untuk memahami dan mengimplementasikan moderasi beragama dalam kehidupan sehari-hari. Hal ini diperlukan mengingat dalam era globalisasi ini, keberagaman menjadi semakin nyata dan relevan dalam konteks kehidupan masyarakat. Keberagaman agama merupakan salah satu aspek yang krusial dalam dinamika sosial yang mempengaruhi cara individu memandang dunia, bertindak, dan berinteraksi satu sama lain. Implementasi moderasi beragama dapat diwujudkan salah satunya melalui pengabdian masyarakat yang dilakukan di MTs Almaarif 01 Singosari. Pengabdian masyarakat yang dilakukan oleh mahasiswa KKM UIN Maulana Malik Ibrahim Malang ini mengimplementasikan moderasi beragama melalui lomba mading. Penelitian ini menggunakan metode penelitian berupa pendekatan kualitatif deskriptif. Data dikumpulkan melalui observasi dan wawancara. Hasil yang didapat adalah adanya dampak positif bagi para siswa, karena dapat memiliki pemahaman yang komprehensif serta dapat mengimplementasikannya dalam karya mading. Meskipun demikian, masih ada beberapa kendala seperti kurangnya minat sebagian siswa terhadap tema moderasi beragama. Dari hasil tersebut, dibutuhkan adanya pemaksimalan dalam mempromosikan tema moderasi beragama untuk menarik minat generasi muda.