Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Perbaikan Drop Tegangan dengan Metode Pecah Beban pada Penyulang GNAP PT. PLN (Persero) ULP Plered Nurjaman, Dede Furqon; Hakim Achmad Rifan; Taryana, Een; Hidayat, Wahyu
EPSILON: Journal of Electrical Engineering and Information Technology Vol 22 No 1 (2024): EPSILON: Journal of Electrical Engineering and Information Technology
Publisher : Department of Electrical Engineering, UNJANI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55893/epsilon.v22i1.116

Abstract

The electricity demand continues to increase every year in line with advancing technology and society's dependence on electricity supply. The society's reliance on electricity drives the improvement of power quality by PLN, one of which is the enhancement of voltage quality. At PT. PLN (Persero) Unit Layanan Pelanggan (ULP) Plered, there is a distribution feeder with an end voltage that is still below the standard. In this study, an analysis of the system related to the improvement of voltage drop on the GNAP distribution feeder was conducted with the assistance of ETAP simulation. The voltage drop improvement was carried out using the load splitting method, which involves redistributing a portion of the load to another feeder. The obtained results show that the voltage drop on the GNAP feeder decreased from the initial 1.19 kV to 0.84 kV during daytime load and from 1.24 kV to 0.90 kV during nighttime load. The voltage loss also experienced a decrease from the initial 5.95% to 4.18% during daytime load and from 6.20% to 4.51% during nighttime load.
Rancang Bangun Prototipe Monitoring Volume Cairan Infus dan Kapasitas Oksigen Medis dengan Warning System berbasis Internet of Things Somantri, Nivika Tiffany; Adji, Tatag Purnomo; Yuliana, Hajiar; Charisma, Atik; Winanti, Naftalin; Haz, Fauzia; Nurjaman, Dede Furqon
TELKA - Telekomunikasi Elektronika Komputasi dan Kontrol Vol 11, No 2 (2025): TELKA
Publisher : Jurusan Teknik Elektro UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/telka.v11n2.248-261

Abstract

Infus dan oksigen medis merupakan komponen vital dalam perawatan pasien di rumah sakit. Ketidakakuratan dalam pemantauan volume cairan infus dan kapasitas oksigen dapat mengakibatkan keterlambatan penanganan yang membahayakan keselamatan pasien. Penelitian ini bertujuan merancang prototipe sistem pemantauan volume cairan infus dan kapasitas oksigen medis berbasis Internet of Things (IoT) dengan warning system untuk meningkatkan efisiensi perawatan. Sistem ini menggunakan sensor load cell dengan modul HX711 sebagai sensor pendeteksi ketersediaan cairan infus pasien, NodeMCU ESP32 sebagai komponen kontrol yang terhubung dengan jaringan internet, sensor load cell dan Sensor HK1100C untuk membaca kapasitas tekanan oksigen medis pada tabung. Data hasil pengkuran sensor tersebut di sajikan pada web server hinger,io dan google spreadsheet serta dalam tampilan LCD. Hasil pengujian sistem setelah dilakukan perbandingan dengan alat ukur yang terkalibrasi serta pengujian fungsi internet of things didapatkan bahwa alat ini memiliki tingkat keakurasian pembacaaan sensor dengan error 0,37% untuk sensor loadcell dan error 3,72% untuk sensor tekanan oksigen. Prototipe ini diharapkan dapat menjadi solusi otomatis dalam meminimalkan risiko human error dan meningkatkan respons tenaga medis. Infusion and medical oxygen are vital components in patient care in hospitals. Inaccuracy in monitoring the volume of infusion fluids and oxygen capacity can result in delays in treatment that endanger patient safety. This study aims to design a prototype of an Internet of Things (IoT)-based monitoring system for infusion fluid volume and medical oxygen capacity with a warning system to improve care efficiency. This system uses a load cell sensor with the HX711 module as a sensor to detect the availability of patient infusion fluids, NodeMCU ESP32 as a control component connected to the internet network, a load cell sensor and an HK1100C sensor to read the capacity of medical oxygen pressure in the cylinder. The measurement data from the sensor is presented on the thinger.io and google spreadsheet web servers and on the LCD display. The results of system testing after comparison with calibrated measuring instruments and testing the internet of things function showed that this tool has a level of sensor reading accuracy with an error of 0.37% for the load cell sensor and an error of 3.72% for the oxygen pressure sensor. This prototype is expected to be an automatic solution in minimizing the risk of human error and increasing the response of medical personnel.