Shahreen Kasim
Universiti Tun Hussein Onn Malaysia

Published : 23 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Rainfall-runoff modelling using adaptive neuro-fuzzy inference system Nurul Najihah Che Razali; Ngahzaifa Ab. Ghani; Syifak Izhar Hisham; Shahreen Kasim; Nuryono Satya Widodo; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp1117-1126

Abstract

This paper discusses the working mechanism of ANFIS, the flow of research, the implementation and evaluation of ANFIS models, and discusses the pros and cons of each option of input parameters applied, in order to solve the problem of rainfall-runoff forecasting. The rainfall-runoff modelling considers time-series data of rainfall amount (in mm) and water discharge amount (in m3/s). For model parameters, the models apply three triangle membership functions for each input. Meanwhile, the accuracy of the data is measured using the Root Mean Square Error (RMSE). Models with good performance in training have low values of RMSE. Hence, the 4-input model data is the best model to measure prediction accurately with the value of RMSE as 22.157. It is proven that ANFIS has the potential to be used for flood forecasting generally, or rainfall-runoff modelling specifically.
A malicious URLs detection system using optimization and machine learning classifiers Ong Vienna Lee; Ahmad Heryanto; Mohd Faizal Ab Razak; Anis Farihan Mat Raffei; Danakorn Nincarean Eh Phon; Shahreen Kasim; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 3: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i3.pp1210-1214

Abstract

The openness of the World Wide Web (Web) has become more exposed to cyber-attacks. An attacker performs the cyber-attacks on Web using malware Uniform Resource Locators (URLs) since it widely used by internet users. Therefore, a significant approach is required to detect malicious URLs and identify their nature attack. This study aims to assess the efficiency of the machine learning approach to detect and identify malicious URLs. In this study, we applied features optimization approaches by using a bio-inspired algorithm for selecting significant URL features which able to detect malicious URLs applications. By using machine learning approach with static analysis technique is used for detecting malicious URLs applications. Based on this combination as well as significant features, this paper shows promising results with higher detection accuracy.  The bio-inspired algorithm: particle swarm optimization (PSO) is used to optimized URLs features. In detecting malicious URLs, it shows that naïve Bayes and support vector machine (SVM) are able to achieve high detection accuracy with rate value of 99%, using URL as a feature.
Phishing detection system using machine learning classifiers Nur Sholihah Zaini; Deris Stiawan; Mohd Faizal Ab Razak; Ahmad Firdaus; Wan Isni Sofiah Wan Din; Shahreen Kasim; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 3: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i3.pp1165-1171

Abstract

The increasing development of the Internet, more and more applications are put into websites can be directly accessed through the network. This development has attracted an attacker with phishing websites to compromise computer systems. Several solutions have been proposed to detect a phishing attack. However, there still room for improvement to tackle this phishing threat. This paper aims to investigate and evaluate the effectiveness of machine learning approach in the classification of phishing attack. This paper applied a heuristic approach with machine learning classifier to identify phishing attacks noted in the web site applications. The study compares with five classifiers to find the best machine learning classifiers in detecting phishing attacks. In identifying the phishing attacks, it demonstrates that random forest is able to achieve high detection accuracy with true positive rate value of 94.79% using website features. The results indicate that random forest is effective classifiers for detecting phishing attacks.
Integrated NIR-HE based SPOT-5 image enhancement method for features preservation and edge detection Farizuwana Akma Zulkifle; Rohayanti Hassan; Mohammad Nazir Ahmad; Shahreen Kasim; Tole Sutikno; Shahliza Abd Halim
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1499-1514

Abstract

Recently, many researchers have directed their attention to methods of predicting shorelines by the use of multispectral images. Thus, a simple and optimised method using image enhancements is proposed to improve the low contrast of the Satellite pour l'Observation de la Terre-5 (SPOT-5) images in the detection of shorelines. The near-infrared (NIR) channel is important in this study to ensure the contrast of the vegetated area and sea classification, due to the high reflectance of leaves in the near infrared wavelength region. This study used five scenes of interest to show the different results in shoreline detection. The results demonstrated that the proposed method performed in an enhanced manner as compared to current methods when dealing with the low contrast ratio of SPOT-5 images. As a result, by utilising the near-infrared histogram equalization (NIR-HE), the contrast of all datasets was efficiently restored, producing a higher efficiency in edge detection, and achieving higher overall accuracy. The improved filtering method showed significantly better shoreline detection results than the other filter methods. It was concluded that this method would be useful for detecting and monitoring the shoreline edge in Tanjung Piai.
An Effective Pre-Processing Phase for Gene Expression Classification Choon Sen Seah; Shahreen Kasim; Mohd Farhan Md Fudzee; Mohd Saberi Mohamad; Rd Rohmat Saedudin; Rohayanti Hassan; Mohd Arfian Ismail; Rodziah Atan
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i3.pp1223-1227

Abstract

A raw dataset prepared by researchers comes with a lot of information. Whether the information is usefull or not, completely depends on the requirement and purposes. In machine learning, data pre-processing is the very initial stage. It is a must to make sure the dataset is totally suitable for the requirement. In significant directed random walk (sDRW), there are three steps in data pre-processing stage. First, we remove unwanted attributes, missing value and proper arrangement, followed by normalization of the expression value and lastly, filtering method is applied. The first two steps are completed by Bioconductor package while the last step is works in sDRW.
Comparison of feature selection techniques in classifying stroke documents Nur Syaza Izzati Mohd Rafei; Rohayanti Hassan; RD Rohmat Saedudin; Anis Farihan Mat Raffei; Zalmiyah Zakaria; Shahreen Kasim
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 3: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i3.pp1244-1250

Abstract

The amount of digital biomedical literature grows that make most of the researchers facing the difficulties to manage and retrieve the required information from the Internet because this task is very challenging. The application of text classification on biomedical literature is one of the solutions in order to solve problem that have been faced by researchers but managing the high dimensionality of data being a common issue on text classification. Therefore, the aim of this research is to compare the techniques that could be used to select the relevant features for classifying biomedical text abstracts. This research focus on Pearson’s Correlation and Information Gain as feature selection techniques for reducing the high dimensionality of data. Towards this effort, we conduct and evaluate several experiments using 100 abstract of stroke documents that retrieved from PubMed database as datasets. This dataset underwent the text pre-processing that is crucial before proceed to feature selection phase. Features selection phase is involving Information Gain and Pearson Correlation technique. Support Vector Machine classifier is used in order to evaluate and compare the effectiveness of two feature selection techniques. For this dataset, Information Gain has outperformed Pearson’s Correlation by 3.3%. This research tends to extract the meaningful features from a subset of stroke documents that can be used for various application especially in diagnose the stroke disease.
Contact Lens Classification by Using Segmented Lens Boundary Features Nur Ariffin Mohd Zin; Hishammuddin Asmuni; Haza Nuzly Abdul Hamed; Razib M. Othman; Shahreen Kasim; Rohayanti Hassan; Zalmiyah Zakaria; Rosfuzah Roslan
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i3.pp1129-1135

Abstract

Recent studies have shown that the wearing of soft lens may lead to performance degradation with the increase of false reject rate. However, detecting the presence of soft lens is a non-trivial task as its texture that almost indiscernible. In this work, we proposed a classification method to identify the existence of soft lens in iris image. Our proposed method starts with segmenting the lens boundary on top of the sclera region. Then, the segmented boundary is used as features and extracted by local descriptors. These features are then trained and classified using Support Vector Machines. This method was tested on Notre Dame Cosmetic Contact Lens 2013 database. Experiment showed that the proposed method performed better than state of the art methods.
Predicting child alimony under Islamic shariah law using hybrid fuzzy inference system Nur Aqilah Khadijah Rosili; Rohayanti Hassan; Noor Hidayah Binti Zakaria; Farid Zamani Che Rose; Shahreen Kasim; Tole Sutikno
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 2: May 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i2.pp1367-1375

Abstract

This paper proposes a novel approach to predicting child alimony under Islamic Shariah law using a hybrid fuzzy inference system, integrating Mamdani and Takagi-Sugeno-Kang (TSK) fuzzy systems. Machine learning algorithms have become valuable tools for legal decision-making, but judicial process delays can lead to adverse effects. Our model aims to expedite decision-making and minimize legal fees by accurately determining the proper amount of alimony for children after divorce. We collected data from 94 alimony cases and evaluated the model’s performance using accuracy, precision, recall, and F1 score metrics. The hybrid fuzzy system achieved promising results with 88% accuracy, 84% precision, 89% recall, and an 86% F1 score. Notably, the model reduced bias and standardization in decision-making, promoting fairness. However, the study suggests potential areas for improvement and emphasizes trans-parent judgment processes and coordination among judges in assessing alimony costs based on sufficiency and ma’ruf criteria. This research significantly contributes to machine learning applications in the judicial domain. It provides a valuable decision-making tool for judges and lawyers to enhance the judicial process’s efficiency and ensure children’s welfare in divorce cases under Islamic Shariah law. Further research can enhance the model’s effectiveness and reliability, opening avenues for continued exploration in this field.