Claim Missing Document
Check
Articles

Found 13 Documents
Search

The impact of sentiment analysis from user on Facebook to enhanced the service quality Daniel D. Albesta; Michael L. Jonathan; Muhammad Jawad; Oktovianus Hardiawan; Derwin Suhartono
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp3424-3433

Abstract

Facebook's influence on the modern social media platform is undoubtedly enormous. While it has gotten a backlash for its inability to control its influence over important affairs, there are still many questions regarding people's perception of Facebook and their sentiment over Facebook. This paper's role in this ongoing debate is to give a glimpse of people's sentiment and perception of Facebook in recent times. By collecting samples data from Facebook's Top Page, this paper hopes to represent a significant amount of people's aspirations towards this company. By processing the data with a processing tool to construct and model out the data and a sentiment analyzer tool helps determine the sentiment, this paper can deduce a 600-comment worth of processed data. The results from the 600 sampled comments concluded that the sentiments towards Facebook are 41.50% negative comments, 22.83% neutral comments, and 35.67% positive comments.
Hoax analyzer for Indonesian news using RNNs with fasttext and glove embeddings Ryan Adipradana; Bagas Pradipabista Nayoga; Ryan Suryadi; Derwin Suhartono
Bulletin of Electrical Engineering and Informatics Vol 10, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i4.2956

Abstract

Misinformation has become an innocuous yet potentially harmful problem ever since the development of internet. Numbers of efforts are done to prevent the consumption of misinformation, including the use of artificial intelligence (AI), mainly natural language processing (NLP). Unfortunately, most of natural language processing use English as its linguistic approach since English is a high resource language. On the contrary, Indonesia language is considered a low resource language thus the amount of effort to diminish consumption of misinformation is low compared to English-based natural language processing. This experiment is intended to compare fastText and GloVe embeddings for four deep neural networks (DNN) models: long short-term memory (LSTM), bidirectional long short-term memory (BI-LSTM), gated recurrent unit (GRU) and bidirectional gated recurrent unit (BI-GRU) in terms of metrics score when classifying news between three classes: fake, valid, and satire. The latter results show that fastText embedding is better than GloVe embedding in supervised text classification, along with BI-GRU + fastText yielding the best result.
Indonesian automatic short answer grading system Heinrich Reagan Salim; Chintya De; Nicholas Daniel Pratamaputra; Derwin Suhartono
Bulletin of Electrical Engineering and Informatics Vol 11, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i3.3531

Abstract

Short answer question is one of the methods used to evaluate student cognitive abilities, including memorizing, designing, and freely expressing answers based on their thoughts. Unfortunately, grading short answers is more complicated than grading multiple choices answers. For that problem, several studies have tried to build an artificial intelligence system called automatic short answer grading (ASAG). We tried to improve the accuracy of the ASAG system at scoring student answers in Indonesian by enhancing the earlier state-of-the-art models and methods. They were the bidirectional encoder representations from transformer (BERT) with fine-tuning approach and ridge regression models utilizing advanced feature extraction. We conducted this study by doing stages of literature review, data set preparation, model development, implementation, and comparison. Using two different ASAG data sets, the best result of this study was an achievement of 0.9508 in pearson’s correlation and 0.4138 in root-mean-square error (RMSE) by the BERT-based model with the fine-tuning approach. This result outperformed the results of the previous studies using the same evaluation metrics. Thus, it proved our ASAG system using the BERT model with fine-tuning approach can improve the accuracy of grading short answers.
Using K-Nearest Neighbor in Optical Character Recognition Veronica Ong; Derwin Suhartono
ComTech: Computer, Mathematics and Engineering Applications Vol. 7 No. 1 (2016): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v7i1.2223

Abstract

The growth in computer vision technology has aided society with various kinds of tasks. One of these tasks is the ability of recognizing text contained in an image, or usually referred to as Optical Character Recognition (OCR). There are many kinds of algorithms that can be implemented into an OCR. The K-Nearest Neighbor is one such algorithm. This research aims to find out the process behind the OCR mechanism by using K-Nearest Neighbor algorithm; one of the most influential machine learning algorithms. It also aims to find out how precise the algorithm is in an OCR program. To do that, a simple OCR program to classify alphabets of capital letters is made to produce and compare real results. The result of this research yielded a maximum of 76.9% accuracy with 200 training samples per alphabet. A set of reasons are also given as to why the program is able to reach said level of accuracy.
Pengembangan Algoritma Fast Inversion dalam Membentuk Inverted File untuk Text Retrieval dengan Data Skala Besar Derwin Suhartono
ComTech: Computer, Mathematics and Engineering Applications Vol. 3 No. 1 (2012): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v3i1.2461

Abstract

The rapid development of information systems generates new needs for indexing and retrieval of various kinds of media. The need for documents in the form of multimedia is increasing currently. Thus, the need to store or retrieve now becomes a primary problem. The multimedia type commonly used is text types, as widely seen as the main option in the search engines like Yahoo, Google or others. Essentially, search does not just want to get results, but also a more efficient process. For the purposes of indexing and retrieval, inverted file is used to provide faster results. However, there will be a problem if the making of an inverted file is related to a large amount of data. This study describes an algorithm called Fast Inversion as the development of base inverted file making method to address the needs related to the amount of data.
Design of Distribution Optimization Application using Firefly Algorithm Ngarap Imanuel Manik; Yunggih Nursalim; Derwin Suhartono
ComTech: Computer, Mathematics and Engineering Applications Vol. 8 No. 3 (2017): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v8i3.2567

Abstract

The goal of this research was to optimize the distribution of goods and computerize. The method consisted of problem identification, analysis, implementation, and evaluation. Firefly algorithm was used as a method for optimizing the distribution of goods. The results achieved are the shortest distribution route of goods in accordance with the existing constraints and low cost of distribution. It can be concluded that the research can beused too ptimizethe distribution of goods and tominimize distributioncost.
Aplikasi E-Tour Guide dengan Fitur Pengenalan Image Menggunakan Metode Haar Classifier Derwin Suhartono; William Surya Permana; Antoni Wiguna; Ferlan Gisman Putra
ComTech: Computer, Mathematics and Engineering Applications Vol. 4 No. 2 (2013): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v4i2.2593

Abstract

Smartphone has became an important instrument in modern society as it is used for entertainment and information searching except for communication. Concerning to this condition, it is needed to develop an application in order to improve smart phone functionality. The objective of this research is to create an application named E-Tour Guide as a tool for helping to plan and manage tourism activity equipped with image recognition feature. Image recognition method used is the Haar Classifier method. The feature is used to recognize historical objects. From the testing result done to 20 images sample, 85% accuracy is achieved for the image recognition feature.
Single Document Automatic Text Summarization using Term Frequency-Inverse Document Frequency (TF-IDF) Hans Christian; Mikhael Pramodana Agus; Derwin Suhartono
ComTech: Computer, Mathematics and Engineering Applications Vol. 7 No. 4 (2016): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v7i4.3746

Abstract

The increasing availability of online information has triggered an intensive research in the area of automatic text summarization within the Natural Language Processing (NLP). Text summarization reduces the text by removing the less useful information which helps the reader to find the required information quickly. There are many kinds of algorithms that can be used to summarize the text. One of them is TF-IDF (TermFrequency-Inverse Document Frequency). This research aimed to produce an automatic text summarizer implemented with TF-IDF algorithm and to compare it with other various online source of automatic text summarizer. To evaluate the summary produced from each summarizer, The F-Measure as the standard comparison value had been used. The result of this research produces 67% of accuracy with three data samples which are higher compared to the other online summarizers.
Eve: An Automated Question Answering System for Events Information Ivan Christanno; Priscilla Priscilla; Jody Johansyah Maulana; Derwin Suhartono; Rini Wongso
ComTech: Computer, Mathematics and Engineering Applications Vol. 8 No. 1 (2017): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v8i1.3781

Abstract

The objective of this research was to create a closed-domain of automated question answering system specifically for events called Eve. Automated Question Answering System (QAS) is a system that accepts question input in the form of natural language. The question will be processed through modules to finally return the most appropriate answer to the corresponding question instead of returning a full document as an output. Thescope of the events was those which were organized by Students Association of Computer Science (HIMTI) in Bina Nusantara University. It consisted of 3 main modules namely query processing, information retrieval, and information extraction. Meanwhile, the approaches used in this system included question classification, document indexing, named entity recognition and others. For the results, the system can answer 63 questions for word matching technique, and 32 questions for word similarity technique out of 94 questions correctly.
Question Categorization using Lexical Feature in Opini.id Christian Eka Saputra; Derwin Suhartono; Rini Wongso
ComTech: Computer, Mathematics and Engineering Applications Vol. 8 No. 4 (2017): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v8i4.4026

Abstract

This research aimed to categorize questions posted in Opini.id. N-gram and Bag of Concept (BOC) were used as the lexical features. Those were combined with Naïve Bayes, Support Vector Machine (SVM), and J48 Tree as the classification method. The experiments were done by using data from online media portal to categorize questions posted by user. Based on the experiments, the best accuracy is 96,5%. It is obtained by using the combination of Bigram Trigram Keyword (BTK) features with J48 Tree as classifier. Meanwhile, the combination of Unigram Bigram (UB) and Unigram Bigram Keyword (UBK) with attribute selection in WEKA achieves the accuracy of 95,94% by using SVM as the classifier.