Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Pine wilt disease spreading prevention system using semantic segmentation Chulhyun Hwang; Jaean Jeong; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2666-2673

Abstract

Pine wilt disease is a disease that affects ecosystems by rapidly killing trees in a short period of time due to the close interaction between three factors such as trees, mediates, and pathogens. There is no 100% mortality infectious forest pests. According to the Korea Forest Service survey, as of April 2019, the damage of pine re-nematode disease was about 490,000 dead trees in 117 cities, counties and wards across the country. It's a fatal condition. In order to prevent this problem, this paper proposes a system that detects dead trees, early infection trees, and the like, using deep learning-based semantic segmentation. In addition, drones were used to photograph the area of the forest, and a separate pixel segmentation label could be used to identify three levels of transmission information: Suspicion, attention, and confirmation. This allows the user to grasp information such as area, location, and alarm to prevent the spread of re-nematode disease.
Fruit tree disease classification system using generative adversarial networks Changsu Kim; Hyesoo Lee; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2508-2515

Abstract

Smart farm refers to a farm that can remotely and automatically maintain proper growth and management of crops and livestock by integrating technology with agriculture. Currently, smart farms are concentrated in the field of smart horticulture, and although spreading research is being conducted in limited spaces. In addition, it is difficult to obtain a sufficient amount of data to be used for learning, and there is a problem that data imbalance occurs because it is difficult to obtain a similar amount for each class. In this paper, we propose a method to amplify a small amount of data and to solve the problems of imbalance data by using a feature that can learn to mimic the data of a generative adversarial network. The proposed method can create dataset of various crops and also show high hit rate. Dataset generated from crops would be used to solve problems of data imbalance by learning.
Body Information Analysis based Personal Exercise Management System Jongwon Lee; Hyunju Lee; Donggyun Yu; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 2: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.204 KB) | DOI: 10.11591/ijece.v8i2.pp651-657

Abstract

Recently, people's interest in health is deepening. So health-related systems are being developed. Existing exercise management systems provided users with exercise related information using PC or smart phone. However, there is a problem that the accuracy of the algorithm for analyzing the user's body information and providing information is low.In this paper, we analyze users' body mass index (BMI) and basal metabolic rate (BMR) and we propose a system that provides the user with necessary information through recommendation algorithm. It informs the user of exercise intensity and momentum, and graphs the exercise history of the user. It also allows the user to refer to the fitness history of other users in the same BMI group. This allows the user to receive more personalized services than the existing exercise management system, thereby enabling efficient exercise.
Human activity recognition by using convolutional neural network Hankil Kim; Sungock Lee; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 6: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.908 KB) | DOI: 10.11591/ijece.v9i6.pp5270-5276

Abstract

In recent years, many researchers have studied the HAR (Human Activity Recognition) system. HAR using smart home sensor is based on computing in smart environment, and intelligent surveillance system conducts intensive research on peripheral support life. The previous system studied in some of the activities is a fixed motion and the methodology is less accurate. In this paper, vision-based studies using thermal imaging cameras improve the accuracy of motion recognition in intelligent surveillance systems. We use one of the deep learning architectures widely used in image recognition systems called Convolutional Neural Networks (CNN). Therefore, we use CNN and thermal cameras to provide accuracy and many features through the proposed method.
Personal customized recommendation system reflecting purchase criteria and product reviews sentiment analysis Wu Guanchen; Minkyu Kim; Hoekyung Jung
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i3.pp2399-2406

Abstract

As the size of the e-commerce market grows, the consequences of it are appearing throughout society. The business environment of a company changes from a product center to a user center and introduces a recommendation system. However, the existing research has shown a limitation in deriving customized recommendation information to reflect the detailed information that users consider when purchasing a product. Therefore, the proposed system reflects the user's subjective purchasing criteria in the recommendation algorithm. And conduct sentiment analysis of product review data. Finally, the final sentiment score is weighted according to the purchase criteria priority, recommends the results to the user.