Mohammed Fattah
My Ismail University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

A 5G mm-wave compact voltage-controlled oscillator in 0.25 µm pHEMT technology Abdelhafid Es-saqy; Maryam Abata; Mahmoud Mehdi; Mohammed Fattah; Said Mazer; Moulhime El Bekkali; Catherine Algani
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 2: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i2.pp1036-1042

Abstract

A 5G mm-wave monolithic microwave integrated circuit (MMIC) voltage-controlled oscillator (VCO) is presented in this paper. It is designed on GaAs substrate and with 0.25 µm-pHEMT technology from UMS foundry and it is based on pHEMT varactors in order to achieve a very small chip size. A 0dBm-output power over the entire tuning range from 27.67 GHz to 28.91 GHz, a phase noise of -96.274 dBc/Hz and -116.24 dBc/Hz at 1 and 10 MHz offset frequency from the carrier respectively are obtained on simulation. A power consumption of 111 mW is obtained for a chip size of 0.268 mm2. According to our knowledge, this circuit occupies the smallest surface area compared to pHEMTs oscillators published in the literature.
28 GHz balanced pHEMT VCO with low phase noise and high output power performance for 5G mm-Wave systems Abdelhafid Es-saqy; Maryam Abata; Mahmoud Mehdi; Said Mazer; Mohammed Fattah; Moulhime El Bekkali; Catherine Algani
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 5: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (819.087 KB) | DOI: 10.11591/ijece.v10i5.pp4623-4630

Abstract

This paper presents the study and design of a balanced voltage controlled oscillator VCO for 5G wireless communication systems. This circuit is designed in monolithic microwave integrated circuit (MMIC) technology using PH15 process from UMS foundry. The VCO ensures an adequate tuning range by a single-ended pHEMT varactors configuration. The simulation results show that this circuit delivers a sinusoidal signal of output power around 9 dBm with a second harmonic rejection between 25.87 and 33.83 dB, the oscillation frequency varies between 26.46 and 28.90 GHz, the phase noise is -113.155 and -133.167 dBc/Hz respectively at 1 MHz and 10 MHz offset and the Figure of Merit is -181.06 dBc/Hz. The power consumed by the VCO is 122 mW. The oscillator layout with bias and RF output pads occupies an area of 0.515 mm2.