Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Application of model reduction for robust control of self-balancing two-wheeled bicycle Vu Ngoc Kien; Nguyen Hong Quang; Ngo Kien Trung
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 1: February 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i1.16298

Abstract

In recent years, balance control of two-wheeled bicycle has received more attention of scientists. One difficulty of this problem is the control object is unstable and constantly impacted by noise. To solve this problem, the authors often use robust control algorithms. However, robust controller of self-balancing two-wheeled bicycle are often complex and higher order so affect to quality during real controlling. The article introduces the stochastic balanced truncation algorithm based on Schur analysis and applies this algorithm to reduce order higher order robust controller in control balancing two-wheeled bicycle problem. The simulation results show that the reduced 4th and 5th order controller arcoording to the stochastic balanced truncation algorithm based on Schur analysis can control the two-wheeled bicycle model. The reduced 3rd order controller cannot control the balance of the two-wheeled bicycle model. The reduced 4th and 5th order controller can replace the original controller while the performance of the control system is ensured. Using reduced 5th, 4th order controller will make the program code simpler, reducing the calculation time of the self-balancing two-wheel control system. The simulation results show the correctness of the model reduction algorithm and the robust control algorithm of two-wheeled self-balancing two-wheeled bicycle.
Radial basis function neural network control for parallel spatial robot Nguyen Hong Quang; Nguyen Van Quyen; Nguyen Nhu Hien
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.14913

Abstract

The derivation of motion equations of constrained spatial multibody system is an important problem of dynamics and control of parallel robots. The paper firstly presents an overview of the calculating the torque of the driving stages of the parallel robots using Kronecker product. The main content of this paper is to derive the inverse dynamics controllers based on the radial basis function (RBF) neural network control law for parallel robot manipulators. Finally,  numerical simulation of the inverse dynamics controller for a 3-RRR delta robot manipulator is presented as an illustrative example.