Huu Phuc Dang
Industrial University of Ho Chi Minh City

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 15 Documents
Search

The study of convex-dual-layer remote phosphor geometry in upgrading WLEDs color rendering index Huu Phuc Dang; Nguyen Thi Phuong Loan; Nguyen Thi Kim Chung; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3890-3896

Abstract

The white-light light-emitting diode (LED) is a semiconductor light source that usually has one chip and one phosphor layer. Because of that simple structure, the color rendering index (CRI) is really poor. Therefore, structure with double layer of phosphor and multiple chips has been studied with the phosphorus proportions and densities in the silicone are constantly changed to find the best option to improve optical properties. In research, we use red phosphor Ca5B2SiO10:Eu3+ layer to place above the yellow phosphor one, and both of them have a convex design. Then, the experiments and measurements are carried out to figure out the effects of this red phosphor as well as the convex-double-layer remote phosphor design on the LED’s performances. The measured results reveal that the light output is enhanced significantly when using convex-dual-layer structure instead of the single-layer design. Additionally, the Ca5B2SiO10:Eu3+ concentration benefits CRI and CQS at around 6600 K and 7700 K correlated color temperature (CCT). Yet, the lumen output shows a slight decline as this red phosphor concentration surpass 26% wt. Through the experiments, it is found that a double layer of chip and double phosphorus is the best structure which could support the quality of CRI and luminous flux.
Applying calcium fluoride and silica particles: A solution to improve color homogeneity of pc-WLEDS Huu Phuc Dang; Nguyen Thi Phuong Loan; Thanh Tung Nguyen; Sang Dang Ho
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3864-3869

Abstract

This article focuses on enhancing the lighting efficiency of pc-WLEDs, a new and advanced lighting solution that has received lots of attention. To adapt to the demand of modern lighting, the lighting performance of pc-WLEDs must be improved, especially the color homogeneity and luminous flux, two of the most important quality indicators of pc-WLEDs. Through experiments, this article proposes using the scattering enhancement particles (SEPs) such as CaF2 and SiO2 with yellow phosphor Y3Al5O12:Ce3+ in pc-WLEDs configuration. The pc-WLEDs model is created by using the LightTools program and set at 8500 K correlated color temperature, while the experimental results yielded from this simulation will be verified by Mie-scattering theory. The information from this article reveals the scattering coefficients of SEPs at 455 nm and 595 nm wavelengths. Moreover, it is confirmed that the employment of CaF2 is effective in promoting the color but may damage the luminous efficiency if the concentration is too high while the SEP material, SiO2, exhibits high luminous efficiency at all concentration.
Application of BaY2F8:Er3+,Yb3+ and Mg8Ge2O11F2:Mn4+ in improving the lighting quality of phosphor-in-glass based white light-emitting diodes with the dual-convex design Huu Phuc Dang; Phung Ton That
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp2934-2940

Abstract

Although the luminous of the remote phosphor structure tends to be better than that of the in-cup or conformal phosphor structures, the poor light quality prevents this lighting method from being widely used. It is recognized through experiments that the two-layer remote phosphorus structure should be used to improve color rendering index (CRI) and color quality ratio (CQS) for WLEDs. In the experiments, WLED structures containing green BaY2F8:Er3+,Yb3+ or red Mg8Ge2O11F2:Mn4+ phosphor on the yellow YAG:Ce3+ phosphor were performed at 8500 K.. After that, Mg8Ge2O11F2:Mn4+ and BaY2F8:Er3+,Yb3+ concentrations in each WLED structure is adjusted until chromatic performance reached the finest quality. As a result, Mg8Ge2O11F2:Mn4+is proved to bring great benefits to the increase of CRI and CQS. Specifically, the greater the concentration of Mg8Ge2O11F2:Mn4+, the better CRI and CQS because of the additional red-light material from this phosphor. The other phosphor material, green BaY2F8:Er3+,Yb3+ phosphor, is beneficial for the expansion of luminous flux. However, if the concentration of Mg8Ge2O11F2:Mn4+ or BaY2F8:Er3+,Yb3+ is over the limit, the decrease in lumen output and chromatic quality will occur. While doing the experiment, Mie-scattering theory and the Beer’s law are great tools to verify the accuracy of results. The results of this article can serve the purpose of improving WLEDs fabrication to produce higher quality product.
Utilizing CaCO3, CaF2, SiO2, and TiO2 phosphors as approaches to the improved color uniformity and lumen efficacy of WLEDs Huu Phuc Dang; Phung Ton That; Nguyen Doan Quoc Anh
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.16357

Abstract

The two elements that are most favorable in the quality evaluation for phosphor-converted LEDs (pcLEDs) these days are the chromatic homogeneity and the lumen output. In this study, a thorough research on enhancing color uniformity and luminous flux of pcLEDs that have a high correlated color temperature (CCT) of 8500K is carried out. The scattering enhancement particles (SEPs): CaCO3, CaF2, SiO2, and TiO2 are used to accomplish the goal by adding them to a yellow phosphor compounding Y3Al5O12:Ce3+, and comparing their characteristics afterwards. LightTools program is used to build an optical simulation and Mie-scattering theory helps to examine the achieved results. Specifically, the parameters included in SEPs’ scattering calculation are the scattering coefficients, the anisotropic scattering, the reduced scattering, and the scattering amplitudes at 455 nm and 595 nm. The outcomes presented that compared to other SEPs, TiO2 particles can yield the highest chromatic homogeneity. However, the lumen output reduces considerably as TiO2 concentration greatly increases while it can be bettered when using SiO2 particles with any particle size. For CaCO3 particles, the color deviation of 620 K CCT can be reduced with 30% concentration, leading to the recommendation of using CaCO3 to promote the CCT homogeneity and luminescence efficiency.
Effects of BaSO4 nano-particles on the enhancement of the optical performance of white LEDs Huu Phuc Dang; Phung Ton That; Dao Huy Tuan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 2: April 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i2.16855

Abstract

The usage of BaSO4 nanoparticles on WLEDs luminous flux and color uniformity improvements have been analyzed and demonstrated in this manuscript. The mixture of BaSO4 and silicone placed on the yellow phosphor layer benefits the internal light scattering and thus enhances the angular correlated color temperature (CCT) homogeneity. Specifically, the blue-light intensity at large angles tend to increase and results in light intensity discrepancy, which can be corrected with added BaSO4. In addition to this, the BaSO4-silicone composite modifies the refractive index of the air-phosphor layer interface to an appropriate value, and thus, the luminous efficiency increases. The results show that the CCT deviations is reduced by 580 K, from 1000 K to 420 K, within the angle range from -700 to +700 with BaSO4 in the phosphor structure. The increase in luminous flux is also recorded by 2.25%, in comparison with that of the non-BaSO4 traditional structure, at the 120-mA driving current. Hence, integrating BaSO4 nanoparticles into the remote phosphor structure can contributes to the enhancement of both lumen output and CCT uniformity.
Multilayer phosphor-in-glass packaging for the development in WLED color uniformity Huu Phuc Dang; Phung Ton That; Tri-Vien Vu
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 3: June 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i3.17786

Abstract

When mentioning the remote phosphor structure, the most noticeable advantage is its higher luminous flux than any other structure’s. However, there are existing flaws in their color uniformity and color rendering index (CRI). Thus, the improvements in these two optic factors must be improved for the better usage of remote phosphor geometry in modern WLED devices. Many researchers have drawn their attention to this idea, and then it has become the primary objective for their studies. In this paper, we also try to accomplish the same result by adjusting the distances between the phosphor layers and through that enhance the optical properties of WLEDs. The mie-scattering theory is applied in our calculations to ensure the reliability and accuracy of experimental results. In our research, with distance d = 0.64 mm, the luminous flux grew 9.7% in comparison to the original value. At 0.84 mm, the distance d enhanced the color uniformity by two times. In the meantime, the CRI remained static during the course of experiment. With suitable application, these results can bring valuable contributions to the development of next WELDs generation.
The impacts from Sr4La(PO4)3O: Ce3+, Tb3+, Mn2+ phosphor resulting in luminous flux of WLED devices Huu Phuc Dang; Bui Van Hien; Nguyen Le Thai
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 2: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i2.pp693-699

Abstract

Using the solid-state technique that involves great temperature, we created multiple phosphors Sr4La(PO4)3O:Ce3+, Tb3+, Mn2+ (abbreviated as SLPO:Ce, Tb, Mn). We then examined their heat consistency, luminescence, as well as energy shift from Ce3+ to Tb3+ and Mn2+. We can acquire a considerable boost for the faint emission in green generated by Tb3+ as well as the emission in red generated by Mn2+ via adding the sensitizer Ce3+ ions. Through modifying the proportion between Ce3+ and Tb3+ along with the proportion between Ce3+ and Mn2+, it is possible to adjust the chroma of emission. We acquired white illumination which had color coordinates determined as (0.3326, 0.3298) for the testing phosphor Sr4La(PO4)3O: 0.12Ce3+, 0.3Mn2+. Such result displays the promising efficiency of phosphors Sr4La(PO4)3O:Ce3+, Tb3+, Mn2+ for the WLED devices.
Study of phosphor Ba2Si3O8:Eu2+ to produce WLED devices with support from ZnCdSe/ZnSe quantum dot Huu Phuc Dang; Bui Van Hien; Nguyen Le Thai
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 2: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i2.pp729-734

Abstract

We created the blue-green Ba2Si3O8:Eu2+ (or BaE) phosphor treated with Eu2+ using the standard solid-state method with the concentration of Eu as well as heating temperature properly adjusted for the maximum luminescence efficacy. It is possible to excite the said phosphor using near-UV (n-UV) wavelengths and to display its wide emission band, which is the 5d => 4f shift for Eu2+, caused by the combination of the Eu activator and the nearby host. We integrated the said phosphor with the n-UV LED to create the pc-LED (short for diodes based on conversion phosphor). For the task of creating the WLED device that yields significant color rendering index, we combined the orange ZnCdSe/ZnSe quantum dot with a distinctive sheet structure for the pc-LED made with phosphor BaE. This research demonstrates the electroluminescence features of the said elements.
The application of multi-layer phosphor-in-glass sheets in boosting white light emitting diodes chromaticity Ha Thanh Tung; Huu Phuc Dang; Nguyen Le Thai
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 3: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i3.pp1318-1325

Abstract

With the use of phosphor-in-glass (abbreviated as PiG), it is possible to make alterations for the remote adjustment incorporated with a diode that generates blue light emitting diode (LED) and acquire remarkably superior light output at considerable temperatures of color compared to standard structures of LED devices. It should be noted that the imbrication of emission spectra in phosphor substances, as well as the forfeited, amount of light caused by reabsorption appear to be the primary problems stemming from the model of multi-color phosphor. The earlier study came up with the method of creating various phosphor-in-glass (PiGs) by slicing and reconstruction, which remedied certain aspects of the flaws mentioned. Practically speaking, the light amount forfeited occurs in the linking zones in the middle of the color phosphor and will be a subject of the research. We can see for certain that it is necessary to come up with a means of preparation to deal with the issues of the interfacial layer. Therefore, the low sintering of PiGs at 600 °C was considered an appropriate procedure, as it could create a double-layer PiG in a lying direction as well as a triple-layer PiG yielding superior optical efficiency when compared to equivalent versions.
The impacts of green LaBSiO5: Tb3+, Ce3+ phosphor on lumen output of white LEDs Ha Thanh Tung; Huu Phuc Dang; Phung Ton That
Bulletin of Electrical Engineering and Informatics Vol 12, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i3.4772

Abstract

The traditional solid-state technique was used to create LaBSiO5 phosphors doped with Ce3+ and Tb3+ at 1,100 °C. These phosphors' phase purity and luminous characteristics are looked at. Under ultraviolet (UV) light stimulation, LaBSiO5: Tb3+ phosphors emit bright green light, whereas LaBSiO5 samples incorporated with Ce3+ emit blue-violet light. With UV ray stimulation, LaBSiO5 samples incorporated with Ce3+ as well as Tb3+ emit blue-violet as well as green illumination. The 5d-4f shift for Ce3+ is responsible for the blue-violet radiation, while the 5D4→7F5 transition of Tb3+ is responsible for the green radiation. The mechanism for power conversion between Ce3+ and Tb3+ was examined since there is a spectral overlap among the stimulation line for Tb3+ and the emitting line for Ce3+.