Huu Phuc Dang
Industrial University of Ho Chi Minh City

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

The study of convex-dual-layer remote phosphor geometry in upgrading WLEDs color rendering index Huu Phuc Dang; Nguyen Thi Phuong Loan; Nguyen Thi Kim Chung; Nguyen Doan Quoc Anh
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3890-3896

Abstract

The white-light light-emitting diode (LED) is a semiconductor light source that usually has one chip and one phosphor layer. Because of that simple structure, the color rendering index (CRI) is really poor. Therefore, structure with double layer of phosphor and multiple chips has been studied with the phosphorus proportions and densities in the silicone are constantly changed to find the best option to improve optical properties. In research, we use red phosphor Ca5B2SiO10:Eu3+ layer to place above the yellow phosphor one, and both of them have a convex design. Then, the experiments and measurements are carried out to figure out the effects of this red phosphor as well as the convex-double-layer remote phosphor design on the LED’s performances. The measured results reveal that the light output is enhanced significantly when using convex-dual-layer structure instead of the single-layer design. Additionally, the Ca5B2SiO10:Eu3+ concentration benefits CRI and CQS at around 6600 K and 7700 K correlated color temperature (CCT). Yet, the lumen output shows a slight decline as this red phosphor concentration surpass 26% wt. Through the experiments, it is found that a double layer of chip and double phosphorus is the best structure which could support the quality of CRI and luminous flux.
Applying calcium fluoride and silica particles: A solution to improve color homogeneity of pc-WLEDS Huu Phuc Dang; Nguyen Thi Phuong Loan; Thanh Tung Nguyen; Sang Dang Ho
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp3864-3869

Abstract

This article focuses on enhancing the lighting efficiency of pc-WLEDs, a new and advanced lighting solution that has received lots of attention. To adapt to the demand of modern lighting, the lighting performance of pc-WLEDs must be improved, especially the color homogeneity and luminous flux, two of the most important quality indicators of pc-WLEDs. Through experiments, this article proposes using the scattering enhancement particles (SEPs) such as CaF2 and SiO2 with yellow phosphor Y3Al5O12:Ce3+ in pc-WLEDs configuration. The pc-WLEDs model is created by using the LightTools program and set at 8500 K correlated color temperature, while the experimental results yielded from this simulation will be verified by Mie-scattering theory. The information from this article reveals the scattering coefficients of SEPs at 455 nm and 595 nm wavelengths. Moreover, it is confirmed that the employment of CaF2 is effective in promoting the color but may damage the luminous efficiency if the concentration is too high while the SEP material, SiO2, exhibits high luminous efficiency at all concentration.
Application of BaY2F8:Er3+,Yb3+ and Mg8Ge2O11F2:Mn4+ in improving the lighting quality of phosphor-in-glass based white light-emitting diodes with the dual-convex design Huu Phuc Dang; Phung Ton That
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 4: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i4.pp2934-2940

Abstract

Although the luminous of the remote phosphor structure tends to be better than that of the in-cup or conformal phosphor structures, the poor light quality prevents this lighting method from being widely used. It is recognized through experiments that the two-layer remote phosphorus structure should be used to improve color rendering index (CRI) and color quality ratio (CQS) for WLEDs. In the experiments, WLED structures containing green BaY2F8:Er3+,Yb3+ or red Mg8Ge2O11F2:Mn4+ phosphor on the yellow YAG:Ce3+ phosphor were performed at 8500 K.. After that, Mg8Ge2O11F2:Mn4+ and BaY2F8:Er3+,Yb3+ concentrations in each WLED structure is adjusted until chromatic performance reached the finest quality. As a result, Mg8Ge2O11F2:Mn4+is proved to bring great benefits to the increase of CRI and CQS. Specifically, the greater the concentration of Mg8Ge2O11F2:Mn4+, the better CRI and CQS because of the additional red-light material from this phosphor. The other phosphor material, green BaY2F8:Er3+,Yb3+ phosphor, is beneficial for the expansion of luminous flux. However, if the concentration of Mg8Ge2O11F2:Mn4+ or BaY2F8:Er3+,Yb3+ is over the limit, the decrease in lumen output and chromatic quality will occur. While doing the experiment, Mie-scattering theory and the Beer’s law are great tools to verify the accuracy of results. The results of this article can serve the purpose of improving WLEDs fabrication to produce higher quality product.