N. Katiran
Universiti Tun Hussein Onn Malaysia

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Frequency Reconfiguration Mechanism of a PIN Diode on a Reconfigurable Antenna for LTE and WLAN Applications S. M. Shah; M. F. M. Daud; Z. Z. Abidin; F. C. Seman; S. A. Hamzah; N. Katiran; F. Zubir
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (780.892 KB) | DOI: 10.11591/ijece.v8i3.pp1893-1902

Abstract

Microstrip patch antennas are increasingly gaining popularity for usage in portable wireless system applications due to their light weight, low profile structure, low cost of production and robust nature. The patch is generally made of a conducting material such as copper or gold and can take any possible shapes, but rectangular shapes are generally used to simplify analysis and performance prediction. Microstrip patch antenna radiates due to the fringing fields between the patch edge and ground plane. In this work, a frequency reconfigurable antenna with a BAR63-02V Positive-Intrinsic-Negative (PIN) diode is designed, simulated and fabricated. The antenna operates at 2.686GHz for Long-Term Evolution (LTE2500) and 5.164GHz for Wireless Local Area Network (WLAN) applications. In the OFF state, the antenna operates at 5.302GHz, which is also suitable for WLAN application. The proposed antenna is fabricated on a FR-4 substrate with a relative dielectric constant, εr of 4.5, thickness, h of 1.6mm and loss tangent, tan δ of 0.019. The fabrication process is carried out at the Advanced Printed Circuit Board (PCB) Design Laboratory in UTHM.
A compact dual-band semi-flexible antenna at 2.45 GHz and 5.8 GHz for wearable applications S. M. Shah; A. A. Rosman; M. A. Z. A. Rashid; Z. Z. Abidin; F. C. Seman; H. A. Majid; S. H. Dahlan; S. A. Hamzah; N. Katiran; A. Ponniran; F. Hassan; F. Zubir
Bulletin of Electrical Engineering and Informatics Vol 10, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i3.2262

Abstract

In this work, a compact dual-band semi-flexible antenna operating at         2.45 GHz and 5.8 GHz for the industrial, scientific and medical (ISM) band is presented. The antenna is fabricated on a semi-flexible substrate material, Rogers Duroid RO3003™ with a low-profile feature with dimensions of 30×38 mm2 which makes it a good solution for wearable applications. Bending investigation is also performed over a vacuum cylinder and the diameters are varied at 50 mm, 80 mm and 100 mm, that represents the average human arm’s diameter. The bending investigation shows that reflection coefficients for all diameters are almost similar which imply that the antenna will operate at the dual-band resonant frequencies, even in bending condition. The simulated specific absorption rate (SAR) in CST MWS® software shows that the antenna obeys the FCC and ICNIRP guidelines for 1 mW of input power. The SAR limits at 2.45 GHz for 1 g of human tissue is simulated at 0.271 W/kg (FCC standard: 1.6 W/kg) while for 10 g is at 0.0551 W/kg (ICNIRP standard: 2 W/kg. On the other hand, the SAR limits at 5.8 GHz are computed at 0.202 W/kg for 1 g and 0.0532 W/kg for 10 g.
A 2.45 GHz microstrip antenna with harmonics suppression capability by using defected ground structure Shaharil Mohd Shah; M. Mohamad; S. A. Hamzah; Z. Z. Abidin; F. C. Seman; N. Katiran; H. A. Majid; A. Ashyap; S. Mohamad
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (667.203 KB) | DOI: 10.11591/eei.v9i1.1847

Abstract

In this work, a microstrip patch antenna with an inset feed and defected ground structure (DGS) is designed at the resonant frequency of 2.45 GHz. The antenna is designed on a FR-4 substrate with a dielectric constant, εr of 4.5, loss tangent, tan δ of 0.019 and thickness, h of 1.6 mm. The technique of DGS is used to avoid the use of additional circuits in the antenna to suppress the harmonics. By introducing a single and additional slots DGS at both ends on the antenna ground plane, the proposed microstrip patch antenna is able to suppress the higher order harmonics. The reflection coefficient, S11 is -38.75 dB at 2.45 GHz. The proposed antenna have suppressed the higher order harmonics effectively from -38.04 dB to -2.61 dB at 4.54 GHz and from -13.08 dB to -1.38 dB at 5.76 GHz. The prototype of the antenna is fabricated for the verification of the design. The simulated and measured results are found to be in a good agreement.
Frequency tuning varactor-loaded reconfigurable antenna for m-WiMAX and WLAN applications S. M. Shah; K. Hamdan; Z. Z. Abidin; F. C. Seman; S. A. Hamzah; N. Katiran; F. Zubir
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i2.pp779-786

Abstract

A design approach for a microstrip patch antenna to achieve the reconfigurable dual-band operation with a tunable device is presented in this work. The approach uses a BB833 varactor diode in the middle of a slotted patch antenna which which is able to produce dual-band resonant frequencies. The reconfigurable antenna is designed and simulated in CST Microwave Studio® software and is later, fabricated on a FR-4 substrate with a dielectric constant,  of 4.5, loss tangent, tan δ of 0.019 and thickness, h of 1.6 mm. By changing the DC voltages of the varactor diode, different capacitance values of the varactor diode are obtained which dictate the specific resonant frequencies. From the simulation results, the capacitance value of 0.5 pF with a bias voltage of 2.0 V is chosen as it produces the required dual-band resonant frequencies at 3.38 GHz and 5.37 GHz for desired applications in the m-WiMAX and WLAN bands.
Autonomous multi-function floor cleaning robot with zig zag algorithm J. Lee; A. S. Ab Ghafar; N. Mohd Nordin; F. A. Saparudin; N. Katiran
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1653-1661

Abstract

In this present era, people live a very busy life. People in cities have irregular and long working times. In such a situation a person will always find ways of saving time. Household chores are the ones that are most dreaded upon and cleaning a home tops the list. An autonomous floor cleaning robot is developed to help people to complete their cleaning task. This paper presents the development of an autonomous floor cleaning robot by using Arduino as a platform for processing and controlling the input and output. Autonomous vacuum cleaner robot is designed to make cleaning process become easier compared to using manual vacuum. The idea is basically by having the sensor to detect any object and send the input to Arduino that will control the robot movement. This robot can perform vacuum and wiping task with water spray function. It is also programmed to move in zigzag movement to ensure that the robot can clean all the corner of the house and avoid obstacle autonomously. This robot consists of three ultrasonic sensors, one infra-red (IR) sensor and two brushes in front of it to ensure effective cleaning. It is designed to run on flat surface. This autonomous multi-function floor cleaning robot has lower cost compared to existing vacuum robot on the shelves and is suitable for home and small premise usage.
Wireless water quality monitoring system for high density aquaculture application F. A. Saparudin; T. C. Chee; A. S. Ab Ghafar; H. A. Majid; N. Katiran
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i2.pp507-513

Abstract

Water quality is one of the major factors that greatly affects growth and mortality rate of aquatic livestock especially in high density aquaculture system.  Conventional method requires fish farmer to perform manual water quality test and record on multiple fish tanks in regular basis. This process is meticulous, and may affect aquatic livestock that needs close and immediate attention. In this paper, water quality monitoring system for the high density aquaculture environment is proposed. The monitoring system is composed of multiple sensor nodes and sensor/server node hybrid, which used to collect and manage the water quality parameter data of multiple tanks. The sensor nodes collect and store the water quality parameters in local database and transmit them to the server node through a wireless communication. The server node is used for data analysis, processing and allow public access via web browser through various Wi-Fi enabled smart devices. This paper presents a proof-of concept of clustered wireless monitoring system focused on the use of multiple sensor nodes to determine the water parameter in real time. This system is cost effective, quickly deployable, and user-friendly with wireless capabilities.
A 2.45 GHz Semi-Flexible wearable antenna for industrial, scientific and medical band applications S. M. Shah; N. F. A. Kadir; Z. Z. Abidin; F. C. Seman; S. A. Hamzah; N. Katiran
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp814-822

Abstract

In this work, a compact size, wearable microstrip patch antenna is designed, simulated and fabricated for the Industrial, Scientific and Medical (ISM) band applications with the operating frequency at 2.45 GHz. A semi-flexible substrate material which is Rogers Duroid RO3003™ with a relative dielectric constant, ε_r of 3, loss tangent, tan δ of 0.010 and thickness, h of 1.52 mm has been proposed to ensure it can be worn on clothes. The antenna has a low-profile feature with 24 × 28 mm2 in dimension. Investigation of the antenna under bending condition on the approximate human arm size is also performed and analysed to ensure that the wearable antenna is applicable for on-body. The bending investigation shows that the initial resonant frequency of 2.45 GHz is shifted to 2.3 GHz. However, the reflection coefficient at 2.45 GHz is still greater than the -10-dB which implies that the antenna is still functional at that particular frequency. The Specific Absorption Rate (SAR) of the antenna has also been simulated to examine whether the antenna obeys the SAR limits under the FCC and CNIRP guidelines. The SAR values obtained show that the antenna obeys the standard for 1 mW input power. The SAR value for 1g of human tissue is computed at 0.03999 W/kg (FCC standard: 1.6 W/kg) while for 10g is at 0.01936W/kg (CNIRP standard: 2 W/kg).