Lincoln Choudhury
Krashapana Consultancy Private Limited

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An agent-based model to assess coronavirus disease 19 spread and health systems burden Madhavarao Seshadri Narassima; Singallur Palanisamy Anbuudayasankar; Guru Rajesh Jammy; AnanthaPadmanabhan Sankarshana; Rashmi Pant; Lincoln Choudhury; Vijay Yeldandi; Shubham Singh; Denny John
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp4118-4128

Abstract

The present pandemic has tremendously raised the health systems’ burden around the globe. It is important to understand the transmission dynamics of the infection and impose localized strategies across different geographies to curtail the spread of the infection. The present study was designed to assess the transmission dynamics and the health systems’ burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using an agent-based modeling (ABM) approach. The study used a synthetic population with 31,738,240 agents representing 90.67 percent of the overall population of Telangana, India. The effects of imposing and lifting lockdowns, nonpharmaceutical interventions, and the role of immunity were analyzed. The distribution of people in different health states was measured separately for each district of Telangana. The spread dramatically increased and reached a peak soon after the lockdowns were relaxed. It was evident that is the protection offered is higher when a higher proportion of the population is exposed to the interventions. ABMs help to analyze grassroots details compared to compartmental models. Risk estimates provide insights on the proportion of the population protected by the adoption of one or more of the control measures, which is of practical significance for policymaking.
An agent based model for assessing transmission dynamics and health systems burden for COVID-19 Narassima M. S.; Anbuudayasankar S. P.; Guru Rajesh Jammy; Rashmi Pant; Lincoln Choudhury; Aadharsh Ramakrishnan; Denny John
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1735-1743

Abstract

Coronavirus disease of 2019 (COVID-19) pandemic has caused over 230 million infections with more than 4 million deaths worldwide. Researches have been using various mathematical and simulation techniques to estimate the future trends of the pandemic to help the policymakers and healthcare fraternity. Agent-based models (ABM) could provide accurate projections than the compartmental models that have been largely used. The present study involves a simulation of ABM using a synthetic population from India to analyze the effects of interventions on the spread of the disease. A disease model with various states representing the possible progression of the disease was developed and simulated using AnyLogic. The results indicated that imposing stricter non-pharmaceutical interventions (NPI) lowered the peak values of infections, the proportion of critical patients, and the deceased. Stricter interventions offer a larger time window for the healthcare fraternity to enhance preparedness. The findings of this research could act as a start-point to understand the benefits of ABM-based models for projecting infectious diseases and analyzing the effects of NPI imposed.