Claim Missing Document
Check
Articles

Found 2 Documents
Search

Content-aware resource allocation model for IPTV delivery networks Suliman M. Fati; Putra Sumari; Choo Wou Onn
International Journal of Electrical and Computer Engineering (IJECE) Vol 9, No 1: February 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1651.133 KB) | DOI: 10.11591/ijece.v9i1.pp369-385

Abstract

Nowadays, with the evolution of digital video broadcasting, as well as, the advent of high speed broadband networks, a new era of TV services has emerged known as IPTV. IPTV is a system that employs the high speed broadband networks to deliver TV services to the subscribers. From the service provider viewpoint, the challenge in IPTV systems is how to build delivery networks that exploits the resources efficiently and reduces the service cost, as well. However, designing such delivery networks affected by many factors including choosing the suitable network architecture, load balancing, resources waste, and cost reduction. Furthermore, IPTV contents characteristics, particularly; size, popularity, and interactivity play an important role in balancing the load and avoiding the resources waste for delivery networks. In this paper, we investigate the problem of resource allocation for IPTV delivery networks over the recent architecture, peer-service area architecture. The Genetic Algorithm as an optimization tool has been used to find the optimal provisioning parameters including storage, bandwidth, and CPU consumption. The experiments have been conducted on two data sets with different popularity distributions. The experiments have been conducted on two popularity distributions. The experimental results showed the impact of content status on the resource allocation process.
Classification of jackfruit and cempedak using convolutional neural network and transfer learning Putra Sumari; Azleena Mohd Kassim; Song-Quan Ong; Gomesh Nair; Al Dabbagh Ragheed; Nur Farihah Aminuddin
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i4.pp%p

Abstract

Jackfruit (Artocarpus integer) and Cempedak (Artocarpus heterophyllus) are two different Southeast Asian fruit species from the same genus that are quite similar in their external appearance, therefore, sometimes difficult to be recognized visually by humans, especially in the form of pictures. Convolutional neural networks (CNN) and transfer learning can provide an excellent solution to recognize fruits, where the methods are known to be able to classify objects with high accuracy. In this study, several models were proposed and constructed to recognize the Jackfruit and Cempedak using a deep convolutional neural network (DCNN). We proposed our custom-made own CNN model and modify five transfer learning models on pre-trained VGG16, VGG19, Xception, ResNet50, and InceptionV3. The experiment used our own dataset and the result showed that the proposed CNN architecture was able to provide an accuracy between 89% to 93.67% compared to the other CNN transfer learning.