Claim Missing Document
Check
Articles

Found 3 Documents
Search

Enhancing performance for three-phase induction motor by changing the magnetic flux density and core material using COMSOL Firas Saaduldeen Ahmed; Zozan Saadallah Hussain; Truska Khalid Mohammed Salih
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp62-72

Abstract

This paper presents a proposed design and analysis of a three-phase squirrel cage induction motor when changing of internal characteristic design for the three-phase induction motor. Two situations have been applied to enhancing the performance of the three-phase induction motor. The first situation has been implemented by changing the magnetic flux density (MFD) via the build of the six-phase for the same induction motor. The second situation has been implemented by changing core materials of the rotor part of the induction motor, like aluminum (AL) and cast iron (CI). The finite element method (FEM) has been used to analyze the rotor part, also to obtain the representation and simulation of the realty cylindrical rotor part of motor. The frequency domain (FD) analysis using to obtain the results within the environment of the COMSOL multiphysics 5.5 version.
Improvement of protection relay with a single phase autoreclosing mechanism based on artificial neural network Zozan Saadallah Hussain; Ahmed J. Ali; Ahmed A. Allu; Rakan Khalil Antar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v11.i1.pp505-514

Abstract

This paper presents a developed logical tripping scheme to improve conventional protection performance. Adaptive single pole auto reclosure (ASPAR) system is proposed that considers, automatically tripping and reclosing of a multi-shot independent pole technique of a circuit breaker at a predetermined sequence, which can be used to boost the synchronization of the power grid under the transient fault conditions. Moreover, the ASPAR can be utilized to enhance the electrical system stability and reliability at the same operating conditions. Based on the three-phase system, the Artificial neural network (ANN) in this work has been done in order to diagnose and detect healthy and faulted phases. The proposed ANN fault classifier method consists of the logic gates, router circuits, timers, and positive and negative sequence analyses circuit. In addition, it is used to give the ability to recognize a fault type, which by training on the sequence angle values and coordination of the transmission line. Three-phase overhead transmission line including the proposed ASPAR is built in MATLA \SIMULINK environment. Thus the performance ANN-fault classified is tested under different fault conditions. Simulation results show that the proposed ASPAR based on ANN is accurate and well performance. Whereas resultant tripping and reclosing signals of ASPAR are successfully provided that enhances the circuit breaker mechanism under these operating condition.
Survey about impact voltage instability and transient stability for a power system with an integrated solar combined cycle plant in Iraq by using ETAP Ahmed Zkear Abass; D.A Pavlyuchenko; Zozan Saadallah Hussain
Journal of Robotics and Control (JRC) Vol 2, No 3 (2021): May
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.2366

Abstract

The Analyses for power systems are more necessary for the designing, operating phase execution control and to make sure safe network operations by sufficient protection project settings. In this article, we have prepared a sufficient scientific survey about the electrical model of a 340 MW integrated solar combined cycle system (ISCCS) located in the Iraqi southern, is developed and simulation by a program called Electrical Transient Analyzer Program (ETAP) and carry out throw this program the load flow, voltage stability and short circuit analyses for this power plant with part of the national grid in Al-Basra city in an industrial region. The effect of voltage instability for the grid on system buses (load buses) of the power system is estimated. By using load flow analysis as a case study by using the Newton-Raphson algorithm, when the load buses operating at down voltage because of instability voltage of the power grid are specified and their voltages are should to improved according to given voltage limitations that are depended on buses criticality with regard to loads. The appliance on-load tap changers of the transformer and reactive power compensation are used to improve steady-state voltage stability for any instability system. The method of the optimal position for capacitor banks placement is meaning the number of capacitor banks is proposed to adding to the weak buses by using the optimal capacitor placement module of ETAP. Energy is actually required for the expansion of our country. To sustain the generation of electric power at an adequate level power system supplies power to different types of loads that are located far away from the generating plants using transmission lines.