Claim Missing Document
Check
Articles

Found 3 Documents
Search

Preliminary analysis of eddy current and iron loss in magnetic gear in electric vehicle Mohd Firdaus Mohd Ab Halim; Erwan Sulaiman; Mahyuzie Jenal; Raja Nor Firdaus Kashfi Raja Othman; Syed Muhammad Naufal Syed Othman
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1161-1167

Abstract

The inclusion of a high energy density permanent magnet into magnetic gear improves the machine's torque density. However, it also contributes to eddy current loss, especially in a high-speed application such in electric vehicle. In this paper, the losses from eddy current and iron loss are investigated on concentric magnetic gear (CMG). Torque multiplier CMG is designed with 8/3 gear ratio for this study. Iron loss and eddy current loss are compared and discussed. Based on this study, eddy current loss contributes to almost 96% of the total loss. This finding is hoped to direct the researcher to focus more on reducing loss associated with eddy current loss.
Design and analysis of double stator HE-FSM for aircraft applications Hassan Ali; Erwan Sulaiman; Mahyuzie Jenal; Irfan Ali; Laili Iwani Jusoh; Zarafi Ahmad; Mohd Firdaus
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 1: March 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i1.pp51-58

Abstract

The main objective of aerospace industry is to produce all electric aircraft (AEA) equipped by electrical devices in coming developments. Electrical machines that provide higher torque densities are gaining more interest for researchers to obtain sustainable direct-drive electrical propulsion system for aircraft applications. In addition to lesser weight and higher torque density, a machine should be “fault tolerant” to applied in aerospace applications. A novel machine for high starting torque, identified as flux switching machine (FSM) was established over the last decade. FSMs comprise all effective sources on stator including robust rotor structure. These machines exhibited higher “torque-to-weight ratios” and reliability. Nonetheless, the challenge of developing a machine suitable for aircraft applications goes far beyond electromagnetic design and much deeper into the field of mechanical systems than traditional ones. Thus, a new double stator (DS) hybrid excitation (HE) FSM design employing segmented rotor is proposed and analyzed in this research work. The suggested design for DS HE-FSM comprises of six field excitation coils (FECs) and six permanent magnets (PMs) as their excitation sources. In this research, investigation of DS HE-FSM is accomplished with respect to flux linkage, back EMF, cogging torque and torque analysis based on 2D FEA.
Modelling and Simulation of Field Oriented Control Based Permanent Magnet Synchronous Motor Drive System Faisal Amin; Erwan Bin Sulaiman; Wahyu Mulyo Utomo; Hassan Ali Soomro; Mahyuzie Jenal; Rajesh Kumar
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 2: May 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i2.pp387-395

Abstract

On the basis of analysis of dq model of permanent magnet synchronous motor (PMSM) and principle of field oriented control (FOC), detail modelling of PMSM drive system and simulation results presented in this paper. The PMSM model is based on electronic components rather than mathematical blocks, this enabled us to achieve simulation results more realistic. Moreover all the modules of this simulation, such as inverter and pwm generator are made from scratch instead of using premade Simulink blocks. Simulation was carried on the basis of step change in speed and torque then made performance comparison of several parameters such as abc current, dq current, speed and torque.