Claim Missing Document
Check
Articles

Found 5 Documents
Search

Optimum Renewable Fraction for Grid-connected Photovoltaic in Office Building Energy Systems in Indonesia Ayong Hiendro; Ismail Yusuf; F. Trias Pontia Wigyarianto; Kho Hie Khwee; Junaidi Junaidi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 4: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (457.75 KB) | DOI: 10.11591/ijpeds.v9.i4.pp1866-1874

Abstract

This paper analyzes influences of renewable fraction on grid-connected photovoltaic (PV) for office building energy systems. The fraction of renewable energy has important contributions on sizing the grid-connected PV systems and selling and buying electricity, and hence reducing net present cost (NPC) and carbon dioxide (CO2) emission. An optimum result with the lowest total NPC for serving an office building is achieved by employing the renewable fraction of 58%, in which 58% of electricity is supplied from the PV and the remaining 42% of electricity is purchased from the grid. The results have shown that the optimum grid-connected PV system with an appropriate renewable fraction value could greatly reduce the total NPC and CO2 emission.
Optimization of SHEPWM cascaded multilevel inverter switching patterns Ayong Hiendro; Ismail Yusuf; Junaidi Junaidi; Trias Pontia Wigyarianto; Yohannes M Simanjuntak
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 11, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (628.804 KB) | DOI: 10.11591/ijpeds.v11.i3.pp1570-1578

Abstract

Selective harmonic elimination (SHE) is an efficient method to eliminate low-order selected harmonics. However, due to nonlinearity in the problems, many optimization techniques give unsatisfied performances in finding optimum switching angles for the SHE. This paper proposes a modified moth-flame optimization algorithm to eliminate selective harmonics in cascaded multilevel inverters. The optimization algorithm is employed to find sets of optimum switching angles for cascaded 5-level, 7-level, and 9-level inverters. The results have shown that modified moth-flame optimization is beneficial in finding optimum switching angles. It performs better than moth-flame optimization (MFO) and differential evolution (DE) algorithms. The optimum switching angles are applied to generate switching pulses for a cascaded 9-level inverter to demonstrate the algorithm’s accuracy. As a result, the low-order harmonics are entirely removed from the ac output voltage of the inverter.
Analysis of wind speed characteristics using different distribution models in Medan City, Indonesia Suwarno Suwarno; Ismail Yusuf; M. Irwanto; Ayong Hiendro
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 2: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i2.pp1102-1113

Abstract

Estimating wind speed characteristics plays an essential role in designing a wind power plant at a selected location. In this study, the Weibull, gamma, and exponential distribution models were proposed to estimate and analyze the wind speed parameters and distribution functions. Real measured data were collected from Medan City, Indonesia. The scale and shape factors of wind distribution for three years data were calculated. The observed cumulative probability of the three models was compared to predicted wind characteristics. The probability density function (PDF) and the cumulative density function (CDF) of wind speed were also analyzed. The results showed that the Weibull model was the best model to determine PDF, while the exponential model was the best model to determine CDF for the Medan City wind site.
Differential Evolution Algorithm with Triangular Adaptive Control Parameter for SHEPWM Switching Pattern Optimization Ismail Yusuf; Ayong Hiendro; F. Trias Pontia Wigyarianto; Kho Hie Khwee
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 3: September 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v8.i3.pp1381-1388

Abstract

Differential evolution (DE) algorithm has been applied as a powerful tool to find optimum switching angles for selective harmonic elimination pulse width modulation (SHEPWM) inverters. However, the DE’s performace is very dependent on its control parameters. Conventional DE generally uses either trial and error mechanism or tuning technique to determine appropriate values of the control paramaters. The disadvantage of this process is that it is very time comsuming. In this paper, an adaptive control parameter is proposed in order to speed up the DE algorithm in optimizing SHEPWM switching angles precisely. The proposed adaptive control parameter is proven to enhance the convergence process of the DE algorithm without requiring initial guesses. The results for both negative and positive modulation index (M) also indicate that the proposed adaptive DE is superior to the conventional DE in generating SHEPWM switching patterns
Photovoltaic parameters estimation of poly-crystalline and mono-crystalline modules using an improved population dynamic differential evolution algorithm Ayong Hiendro; Ismail Yusuf; Fitriah Husin; Kho Hie Khwee
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4538-4548

Abstract

Photovoltaic (PV) parameters estimation from the experimental current and voltage data of PV modules is vital for monitoring and evaluating the performance of PV power generation systems. Moreover, the PV parameters can be used to predict current-voltage (I-V) behavior to control the power output of the PV modules. This paper aimed to propose an improved differential evolution (DE) integrated with a dynamic population sizing strategy to estimate the PV module model parameters accurately. This study used two popular PV module technologies, i.e., poly-crystalline and mono-crystalline. The optimized PV parameters were validated with the measured data and compared with other recent meta-heuristic algorithms. The proposed population dynamic differential evolution (PDDE) algorithm demonstrated high accuracy in estimating PV parameters and provided perfect approximations of the measured I-V and power-voltage (P-V) data from real PV modules. The PDDE obtained the best and the mean RMSE value of 2.4251E-03 on the poly-crystalline Photowatt-PWP201, while the best and the mean RMSE value on the mono-crystalline STM6-40/36 was 1.7298E-03. The PDDE algorithm showed outstanding accuracy performance and was competitive with the conventional DE and the existing algorithms in the literature.