Glori Stephani Saragih
Universitas Indonesia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Prediction schizophrenia using random forest Zuherman Rustam; Glori Stephani Saragih
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14837

Abstract

Schizophrenia is a mental illness with a very bad impact on sufferers, attacking the part of human brain that disables the ability to think clearly. In 2018, Rustam and Rampisela classified Schizophrenia by using Northwestern University Schizophrenia Data, based on 66 variables consisting of group, demographic, and questionnaires statistics, based on the scale for the assessment of negative symptoms (SANS), and scale for the assessment of positive symptoms (SAS), and then classifiers that used are SVM with Gaussian kernel and Twin SVM with linear and Gaussian kernel. Furthermore, this research is novel based on the use of random forest as a classifier, in order to predict Schizophrenia. The result obtained is reported in percentage of accuracy, both in training and testing of random forest, which was 100%. This classification, therefore, shows the best value in contrast with prior methods, even though only 40% of training data set was used. This is very important, especially in the cases of rare disease, including schizophrenia.