Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Employee Attrition and Performance Prediction using Univariate ROC feature selection and Random Forest Aris Nurhindarto; Esa Wahyu Andriansyah; Farrikh Alzami; Purwanto Purwanto; Moch Arief Soeleman; Dwi Puji Prabowo
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 4, November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i4.1345

Abstract

Each company applies a contract extension to assess the performance of its employees. Employees with good performance in the company are entitled to future contracts within a certain period of time. In a pandemic time, many companies have made decisions to carry out WFH (Work from Home) activities even to Termination (Attrition) of Employment. The company's performance cannot be stable if in certain fields it does not meet the criteria required by the company. Thus, due to many things to consider in contract extension, we are proposed feature selection steps such as duplicate features, correlated features and Univariate Receiver Operating Characteristics curve (ROC) to reduce features from 35 to 21 Features. Then, after we obtained the best features, we applied into Decision Trees and Random Forest. By optimizing parameter selection using parameter grid, the research concluded that Random Forest with feature selection can predict Employee Attrition and Performance by obtain accuracy 79.16%, Recall 76% and Precision 82,6%. Thus with those result, we can conclude that we can obtain better prediction using 21 features for employee attrition and performance which help the higher management in making decisions.
Sentiment Analysis of Community Response Indonesia Against Covid-19 on Twitter Based on Negation Handling Viry Puspaning Ramadhan; Purwanto Purwanto; Farrikh Alzami
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 2, May 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i2.1429

Abstract

The use of the internet globally, especially on the use of social media, includes Indonesia as one of the most active users in the world. The amount of information that can be obtained can be used to be processed into useful information, for example, information about the public sentiment on a particular topic. Tracking and analyzing tweets can be a method to find out people's thoughts, behavior, and reactions regarding the impact of Covid-19. The key to sentiment analysis is the determination of polarity, which determines whether the sentiment is positive or negative. The word negation in a sentence can change the polarity of the sentence so that if it is not handled properly it will affect the performance of the sentiment classification. In this study, the implementation of negation handling on sentiment analysis of Indonesian people's opinions regarding COVID-19 on Twitter has proven to be good enough to improve the performance of the classifier. Accuracy results obtained are 59.6% compared to adding negation handling accuracy obtained is 59.1%. Although the percentage result is not high, documents that include negative sentences have more meaning than negative sentences. However, for the evaluation using the MCC evaluation matrix, the results were quite good for the testing data. For the results of the proposed method whether it is suitable for data that has two classes or three classes when viewed from the results of the evaluation matrix, the proposed method is more suitable for binary data or data that has only two classes.