Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : ILKOM Jurnal Ilmiah

Classification of Lombok Pearls using GLCM Feature Extraction and Artificial Neural Networks (ANN) Muh Nasirudin Karim; Ricardus Anggi Pramunendar; Moch Arief Soeleman; Purwanto Purwanto; Bahtiar Imran
ILKOM Jurnal Ilmiah Vol 14, No 3 (2022)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v14i3.1317.209-217

Abstract

This study used the second-order Gray Level Co-occurrence Matrix (GLCM) and pearl image classification using the Artificial Neural Network (ANN). No previous research combines the GLCM method with artificial neural networks in pearl image classification. The number of images used in this study is 360 images with three labels, including 120 A images, 120 AA images, and 120 AAA images. The epochs used in this study were 10, 20, 30, 40, 50, 60, 70, and 80. The test results at epoch 10 got 80.00% accuracy, epoch 20 got 90.00% accuracy, epoch 30 got 93.33% accuracy, and epoch 40 got 94.44% accuracy. In comparison, epoch 50 got 95.55% accuracy, epoch 60 got 96.66% accuracy, epoch 70 got 96.66% accuracy, and epoch 80 got 95.55% accuracy. The combination of the proposed methods can produce accuracy in classifying pearl images, such as the classification test results.
Semantic segmentation of pendet dance images using multires U-Net architecture Hendri Ramdan; Moh. Arief Soeleman; Purwanto Purwanto; Bahtiar Imran; Ricardus Anggi Pramunendar
ILKOM Jurnal Ilmiah Vol 14, No 3 (2022)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v14i3.1316.329-338

Abstract

As a cultural heritage, traditional dance must be protected and preserved. Pendet dance is a traditional dance from Bali, Indonesia. Dance recognition raises a complex problem for computer vision research because the features representing the dancer must focus on the dancer's entire body. This can be done by performing a segmentation task process. One type of segmentation task in computer vision is the semantic segmentation. Mask R-CNN and U-NET were employed in this task. Since it was first introduced in 2015, semantic segmentation using the U-Net architecture has been widely adopted, developed, and modified. One of the new architectures applied is the MultiRes UNet. This study carries out a semantic segmentation task on the Balinese Pendet dance image using the MultiRes UNet architecture by changing the value of α (alpha) to obtain the best results. This architectural is evaluated by DC score, Jaccard index, and MSE. In this dataset, the alpha value of 1.9 resulted in the best score for DC and the Jaccard index with 98.47% and 99.23% respectively. On the other hand, an alpha value of 1.8 obtained the best score of MSE with 8.20E-04.