Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : KLIK: Kajian Ilmiah Informatika dan Komputer

Deep Learning Menggunakan Algoritma Xception dan Augmentasi Flip Pada Klasifikasi Kematangan Sawit Masaugi, Fathan Fanrita; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1938

Abstract

Palm oil is an important commodity in Indonesia, especially as Indonesia is the highest palm oil exporting country in the world. Ripe palm fruit is marked by a change in color of the fruit from black to reddish yellow. Apart from that, immature palm fruit has a negative and significant effect on CPO production. The data collection process was carried out by directly taking pictures of palm fruit on oil palm plantations and data obtained from Kaggle. The total amount of data is 1000 images and 1000 data resulting from flip augmentation. The Xception algorithm is an algorithm in deep learning which stands for Extreme version of Inception. This combination was then proven to provide better accuracy in classifying images from a dataset. The optimizer used is the optimizer in TensorFlow, namely Adam (Adaptive Moment Estimation) using learning rate and dropout values. Images of mature and immature palm oil were classified using the Xception algorithm with augmented and without augmented data. In addition, experiments were carried out by changing the parameter values ??of learning rate to 0.1, 0.01, 0.001 and dropout to 0.1, 0.01, 0.001. It was found that the data division was (90;10) with the best accuracy reaching 95%. Test parameters carried out by trialling were proven to increase accuracy when compared to without using parameters and flip augmentation. The best accuracy of the Xception model is 95% on augmented data with a learning rate of 0.001 and a dropout of 0.1.
Implementasi VGG 16 dan Augmentasi Zoom Untuk Klasifikasi Kematangan Sawit Mazdavilaya, T Kaisyarendika; Yanto, Febi; Budianita, Elvia; Sanjaya, Suwanto; Syafria, Fadhilah
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1940

Abstract

Indonesia is a country that has very abundant palm oil plantations and makes palm oil one of the largest export commodities in Indonesia. Fruit maturity on oil palms has a significant influence on palm oil and kernel production. The level of ripeness in palm oil fruit can affect several contents in it, such as tocopherol content, yield and FFA. The classification will be divided into 2 classes, namely between ripe and immature fruit with data on 500 images of ripe fruit and 500 images of immature fruit, data taken from the Kaggle site and private gardens taken using a cellphone camera. The data that has been obtained is augmented which is useful for enriching the data to make it more abundant. Data augmentation uses zoom augmentation and makes the original 1000 data increase to 2000 data. The model used is VGG 16 which is part of deep learning. The existing dataset is then preprocessed, resized and rescaled, then divides the data into 3, namely train, test and valid data. After dividing the data, then carry out the classification process with VGG 16 and set the hyperparameters after that the model will learn with 20 epochs. The model will learn with 57 schemes to compare and find highest accuracy. After the model has finished learning, it is evaluated using a confusion matrix. The results obtained were that the 90:10 data division using data augmentation with a learning rate of 0.01 and a dropout of 0.001 obtained the best accuracy, reaching 93.8%.
Penerapan Metode Backpropagation Neural Network untuk Klasifikasi Penyakit Stroke Azhima, Mohd; Afrianty, Iis; Budianita, Elvia; Gusti, Siska Kurnia
KLIK: Kajian Ilmiah Informatika dan Komputer Vol. 4 No. 6 (2024): Juni 2024
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/klik.v4i6.1956

Abstract

Stroke is a non-communicable disease that can occur suddenly due to local or global disruption of brain function. The early symptoms of stroke are often difficult to recognize, causing many sufferers not to realize or feel the signs, so the death rate is quite high. This research aims to determine the ability of the Backpropagation Neural Network (BPNN) method in classifying stroke. The dataset used consists of 4891 medical records with stroke and non-stroke classes which include ten relevant variables (gender, age, hypertension, history of heart disease, BMI, blood sugar levels, and so on). This research runs three scenarios with the BPNN architecture model [19:25:1], [19:29:1], and [19:35:1] using a certain combination of variables, namely the comparison of training and testing data (90:10, 80 :20, 70:30), and learning rate 0.1; 0.01; 0.001. Test results with the highest average accuracy level of 96.14% were achieved with an architectural model of [19:29:1], a learning rate of 0.001, and a training and testing data distribution of 80:20. Based on testing, it can be concluded that BPNN is considered capable of classifying stroke