Nabihah Hussin
Universiti Teknologi Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Graphene Nanoplatelets (GnP)-PVA Based Passive Saturable Absorber Nabihah Hussin; Mohd Haniff Ibrahim; Fauzan Ahmad; Hafizal Yahaya; Sulaiman Wadi Harun
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 2: June 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i2.6126

Abstract

A passive Q-switched pulsed laser at 1.5 m region incorporating graphene nanoplatelets (GnPs) embedded in Polyvinyl Alcohol (PVA) is demonstrated. A surfactant is used to aid the dispersion of the GnPs before it is mixed with PVA to develop a GnPs-PVA film based SA. The SA is integrated into the laser cavity by attaching a cut of the GnPs-PVA film in between two fiber ferrule of the laser ring cavity.The proposed GnPs-PVA film based passive Q–switched laser was able to operate as the input pump power was increased from 39 mW up to a maximum of 148 mW before diminishing. The laser obtained operated with a central wavelength of 1530.76 nm. Repetition rates were obtained at 33 kHz to 91.5 kHz, throughout the tunable input pump power with the shortest pulse width of 2.42 s. Maximum attainable peak power and pulse energy of 1.2 mW and 5.9 nJ, respectively, was recorded, accompanied by a signal to noise ratio (SNR) of 28 dB.
Graphene-polyvinyl alcohol polymer based saturable absorption at 2000 nm region Nabihah Hussin; Asrul Izam Azmi; Mohd Rashidi Salim; Muhammad Yusof Mohd Noor; Ahmad Sharmi Abdullah; Michael David; Fauzan Ahmad; Mohd Haniff Ibrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 2: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i2.pp701-708

Abstract

A graphene-polyvinyl alcohol (PVA) composite saturable absorption is demonstrated at 2000 nm region. Graphene suspension is produced using low-cost electrochemical exfoliation process. The suspension is mixed with PVA host polymer in 1:1 ratio and left evaporated at room temperature which finally produced graphene-PVA thin film. Thulium doped fiber (TDF) gain medium has been shown to produce a stable Q-switched pulse with a highest repetition rate of 54 kHz, a short pulse duration of 2.89 µs, a maximum peak power of 16 mW, and an estimated maximum pulse energy of 49 nJ. Apparently, at 2000 nm region, superior performances of graphene-PVA composite have been recorded which was largely contributed by meticulous composite preparation and homogenous mixture with PVA host.
A New Ozone Concentration Regulator Michael David; Tay Ching En Marcus; Maslina Yaacob; Mohd Rashidi Salim; Nabihah Hussin; Mohd Haniff Ibrahim; Sevia Mahdaliza Idrus; Nor Hafizah Ngajikin; Asrul Izam Azmi
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 2: February 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Laboratory design of an ozoneconcentration regulator which is build on the theory of continuity equation forgas flow in parallel pipes in conjunction with the ozone elimination potentialsof an ozone destructor is presented. At an initial oxygen flow rate of 33.33 cm3s-1,ozone concentration was  generated andvaried between 429.30 parts per million (ppm) to 3826.60 ppm.  Similarly at an initial oxygen flow rate of 25cm3s-1, ozone concentration was  generated and varied between 387.30 ppm to4435.20 ppm. Effect of flow meter when the ozone concentration was set toapproximate 1000 ppm  were investigatedand reported. Fine tuning of the regulator is necessary to ensureconcentration stability for long duration experimental work. DOI: http://dx.doi.org/10.11591/telkomnika.v13i2.6952