Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Isolated Word Recognition Using Ergodic Hidden Markov Models and Genetic Algorithm Nyoman Rizkha Emillia; Suyanto Suyanto; Warih Maharani
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 10, No 1: March 2012
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v10i1.769

Abstract

Speech to text was one of speech recognition applications which speech signal was processed, recognized and converted into a textual representation. Hidden Markov model (HMM) was the widely used method in speech recognition. However, the level of accuracy using HMM was strongly influenced by the optimalization of extraction process and modellling methods. Hence in this research, the use of genetic algorithm (GA) method to optimize the Ergodic HMM was tested. In Hybrid HMM-GA, GA was used to optimize the Baum-Welch method in the training process. It was useful to improve the accuracy of the recognition result which is produced by the HMM parameters that generate the low accuracy when the HMM are tested. Based on the research, the percentage increases the level of accuracy of 20% to 41%. Proved that the combination of GA in HMM method can gives more optimal results when compared with the HMM system that not combine with any method.
Nearest Neighbor-Based Indonesian G2P Conversion Suyanto Suyanto; Agus Harjoko
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 2: June 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i2.57

Abstract

Grapheme-to-phoneme conversion (G2P), also known as letter-to-sound conversion, is an important module in both speech synthesis and speech recognition. The methods of G2P give varying accuracies for different languages although they are designed to be language independent. This paper discusses a new model based on pseudo nearest neighbor rule (PNNR) for Indonesian G2P. In this model, partial orthogonal binary code for graphemes, contextual weighting, and neighborhood weighting are introduced. Testing to 9,604 unseen words shows that the model parameters are easy to be tuned to reach high accuracy. Testing to 123 sentences containing homographs shows that the model could disambiguate homographs if it uses long graphemic context. Compare to information gain tree, PNNR gives slightly higher phoneme error rate, but it could disambiguate homographs.