Panca Mudjirahardjo
Brawijaya University

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Matching algorithm performance analysis for autocalibration method of stereo vision Raden Arief Setyawan; Rudy Soenoko; Moch Agus Choiron; Panca Mudjirahardjo
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14842

Abstract

Stereo vision is one of the interesting research topics in the computer vision field. Two cameras are used to generate a disparity map, resulting in the depth estimation. Camera calibration is the most important step in stereo vision. The calibration step is used to generate an intrinsic parameter of each camera to get a better disparity map. In general, the calibration process is done manually by using a chessboard pattern, but this process is an exhausting task. Self-calibration is an important ability required to overcome this problem. Self-calibration required a robust and good matching algorithm to find the key feature between images as reference. The purpose of this paper is to analyze the performance of three matching algorithms for the autocalibration process. The matching algorithms used in this research are SIFT, SURF, and ORB. The result shows that SIFT performs better than other methods.
Klasifikasi Citra Warna Daun Padi Menggunakan Metode Histogram of S-RGB dan Fuzzy Logic Berbasis Android Raimundus Sedo; Panca Mudjirahardjo; Erni Yudaningtyas
InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Vol 3, No 2 (2019): InfoTekJar Maret
Publisher : Universitas Islam Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (461.578 KB) | DOI: 10.30743/infotekjar.v3i2.1060

Abstract

 The level of greenish leaves of rice plants is one indicator to analyze the nutrient needs of the rice plant nitrogen required. In the process, one recommended way to determine nitrogen needs for the rice plant is the use Leaf Color Chart (LCC). Given the need for efficiency of time and energy, and to avoid the perception of the color differences are observed, it is important to do the development of a system to facilitate the farmers in determining the nitrogen requirements for rice.This research aims to develop an Android-based system to determine nitrogen needs for the rice crop through image processing concept. The method used is of s-RGB Histograms and Fuzzy Logic. Method of s-RGB Histogram function to extract the characteristic color of rice leaves, while Fuzzy Logic is used to classify images based on 4 levels of rice leaf color on the LCC also to determine the dose of nitrogen necessary for the needs of rice plants.Tests carried out using Samsung's smartphone brands with a capacity of 8 MP camera. The test results and evaluation system using the Confusion Matrix for Multiple Classes showed that the accuracy of the system provide the requested information is considered good enough, that is 88.19%. The success of the system to find the information back to the recall level of 88.25%. Degree of proximity between the predicted value of the system to the actual value of 88.75%, and the level of specificity obtained at 62.12%. While the system achieved computational time average of 10:14 seconds. Keywords- Histogram of s-RGB, Fuzzy Logic, Leaf Color Chart, Confusion Matrix for Multiple Classes
Identifikasi Takaran Pupuk Nitrogen Berdasarkan Tingkat Kehijauan Daun Tanaman Padi Menggunakan Metode Histogram of s-RGB dan Fuzzy Logic Raimundus Sedo; Panca Mudjirahardjo; Erni Yudaningtyas
Jurnal EECCIS Vol 13, No 1 (2019)
Publisher : Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak – Analisis warna daun padi merupakan salah satu cara untuk mengidenfikasi kandungan unsur hara yang dibutuhkan sebagai dasar rekomendasi takaran pupuk untuk tanaman padi. Apabila kelebihan nitrogen, maka tanaman padi mudah terserang hama penyakit selain mencemari air tanah. Sebaliknya, jika kekurangan nitrogen, maka pertumbuhannya menjadi tidak normal. Tujuan penelitian ini adalah merancang sistem untuk mengidentifikasi takaran pupuk nitrogen berdasarkan tingkat kehijauan daun tanaman padi melalui konsep pengolahan citra menggunakan metode Histogram of s-RGB dan Fuzzy Logic berbasis android. Pada peneitian ini, Bagan Warna Daun (BWD) merupakan konsep dasar dalam proses pengembangan dan perancangan sistem ini. Sistem dirancang berdasarkan 4 skala warna sesuai level warna BWD agar dapat mengidentifikasi citra daun padi sebagai dasar rekomendasi takaran pupuk nitrogen.Berdasarkan hasil pengujian, diketahui bahwa rata-rata jarak terdekat (euclidean distance) nilai RGB citra daun padi yang dihasilkan sistem terhadap nilai RGB citra level warna BWD sebesar 14,28 pada smartphone 8 MP, sedangkan smartphone 5 MP sebesar 15,44. Hasil evaluasi Confusion Matrix for Multiple Classes menunjukkan bahwa ketepatan sistem memberikan informasi yang diminta pada smartphone 8 MP dinilai lebih baik, yaitu 93,03% dibanding pada smartphone 5 MP sebesar 87,18%. Keberhasilan sistem untuk menemukan informasi kembali pada smartphone 8 MP dinilai lebih unggul dengan tingkat recall sebesar 93,42%, dibanding sistem pada smartphone 5 MP sebesar 86,08%. Tingkat kedekatan antara nilai prediksi sistem dengan nilai aktual pada smartphone 8 MP sebesar 91,03%, sedangkan pada smartphone 5 MP mencapai 88,31%, namun keduanya memiliki specificity yang sama sebesar 66,67%. Kata Kunci— Histogram of s-RGB, Fuzzy Logic, Euclidean Distance, Confusion Matrix for Multiple Classes
Effect of combination of dye carotene and phycocyanin using daucus carota and spirulina sp. on optical sensor performance Rahmadwati Rahmadwati; Luthfiyah Rachmawati; Panca Mudjirahardjo; Eka Maulana
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp907-913

Abstract

This research designed optical sensors using mercury lamp of 160W. These sensors provided voltage and current output. The design of optical sensors used the organic based material,i.e. dye  carotene and phycocyanin. Fabrication of optical sensor in this research used spin coating deposition method. Based on the results of absorbance test, dye carotene had the largest absorption of light of 2.882 (a.u).  Dye phycocyanin at length had the largest absorption of light of 2.787 (a.u). Combination between dye carotene and phycocyanin, for a 3: 1 (Carotene: Phycocyanin) ratio had a waveform like a dye carotene with a peak of 2.587 (au), whereas for 1: 3 had a waveform like phycocyanin with a peak of 2,279 (au). But, sample 1: 1 ratio had decrement the light absorbance rate with peaks of 1.183 (au). At the voltage testing result, combination of phycocyanin: carotene (1:3) had the best linearity. The response time of dye 3:1 (phycocyanin: carotene), 1:1, 1:3, phycocyanin, and carotene were 6.72 s, 2.469s, 1.171s, 2.66s and 7.01s respectively. 
Performance improvement of dye-sensitized solar cells by using natural chlorophyll and anthocyanin dyes Miladina Rizka Aziza; Eka Maulana; Panca Mudjirahardjo; Jumiadi Jumiadi
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 3: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i3.pp1290-1299

Abstract

Natural dye-sensitized solar cells (DSSC) have gained so much attention in recent years due to its low-cost fabrication process, ease of fabrication, and environmentally friendly. In order to improve the DSSC performance, the absorbance spectral of dyes must reach the maximum visible spectrum values. The combination of two dyes with different absorbance spectra can be utilized to expand the absorbance spectral. Here, we demonstrated the combination of natural chlorophyll and anthocyanin dyes from cassava leaves and black sticky rice, respectively, to enhance the DSSC performance. Our findings provide insights for increasing the DSSC performance by varying the combination of natural dyes. The highest efficiency was obtained from Chlorophyll:Anthocyanin 3:1.