Amelia Wong Azman
International Islamic University Malaysia

Published : 10 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 10 Documents
Search

Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.
Parasitic consideration for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.696 KB) | DOI: 10.11591/eei.v8i3.1526

Abstract

Parasitic integration for a single supply differential capacitive sensing technique is presented in this paper. In real capacitive sensor measurement, parasitic impedance exists in its measurement. This paper objective is to study the effect of capacitive and resistive parasitic to the capacitive sensor circuit. The differential capacitive sensor circuit derivation theory is elaborated first. Then, comparison is made using simulation. Test was carried out using frequency from 40 kHz up to 400 kHz. Result is presented and have shown good linearity of 0.99984 at 300 kHz, R-squared value. This capacitive sensor is expected to be used for energy harvesting application.
Intelligent Cooperative Adaptive Weight Ranking Policy via dynamic aging based on NB and J48 classifiers Dua’a Mahmoud Al-Qudah; Rashidah Funke Olanrewaju; Amelia Wong Azman
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 5, No 4: December 2017
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v5i4.362

Abstract

The increased usage of World Wide Web leads to increase in network traffic and create a bottleneck over the internet performance.  For most people, the accessing speed or the response time is the most critical factor when using the internet. Reducing response time was done by using web proxy cache technique that storing a copy of pages between client and server sides. If requested pages are cached in the proxy, there is no need to access the server. But, the cache size is limited, so cache replacement algorithms are used to remove pages from the cache when it is full. On the other hand, the conventional algorithms for replacement such as Least Recently Use (LRU), First in First Out (FIFO), Least Frequently Use (LFU), Randomised Policy, etc. may discard essential pages just before use. Furthermore, using conventional algorithms cannot be well optimized since it requires some decision to evict intelligently before a page is replaced. Hence, this paper proposes an integration of Adaptive Weight Ranking Policy (AWRP) with intelligent classifiers (NB-AWRP-DA and J48-AWRP-DA) via dynamic aging factor.  To enhance classifiers power of prediction before integrating them with AWRP, particle swarm optimization (PSO) automated wrapper feature selection methods are used to choose the best subset of features that are relevant and influence classifiers prediction accuracy.   Experimental Result shows that NB-AWRP-DA enhances the performance of web proxy cache across multi proxy datasets by 4.008%,4.087% and 14.022% over LRU, LFU, and FIFO while, J48-AWRP-DA increases HR by 0.483%, 0.563% and 10.497% over LRU, LFU, and FIFO respectively.  Meanwhile, BHR of NB-AWRP-DA rises by 0.9911%,1.008% and 11.5842% over LRU, LFU, and FIFO respectively while 0.0204%, 0.0379% and 10.6136 for LRU, LFU, FIFO respectively using J48-AWRP-DA.
Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.
Parasitic consideration for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.696 KB) | DOI: 10.11591/eei.v8i3.1526

Abstract

Parasitic integration for a single supply differential capacitive sensing technique is presented in this paper. In real capacitive sensor measurement, parasitic impedance exists in its measurement. This paper objective is to study the effect of capacitive and resistive parasitic to the capacitive sensor circuit. The differential capacitive sensor circuit derivation theory is elaborated first. Then, comparison is made using simulation. Test was carried out using frequency from 40 kHz up to 400 kHz. Result is presented and have shown good linearity of 0.99984 at 300 kHz, R-squared value. This capacitive sensor is expected to be used for energy harvesting application.
Frequency dependency analysis for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (864.011 KB) | DOI: 10.11591/eei.v8i3.1524

Abstract

A differential capacitive sensing technique is discussed in this paper. The differential capacitive sensing circuit is making use of a single power supply. The design focus for this paper is on the excitation frequency dependency analysis to the circuit. Theory of the differential capacitive sensor under test is discussed and derivation is elaborated. Simulation results are shown and discussed. Next, results improvement has also been shown in this paper for comparison. Test was carried out using frequency from 40 kHz up to 400 kHz. Results have shown output voltage of Vout=0.07927 Cx+1.25205 and good linearity of R-squared value 0.99957 at 200 kHz. Potential application for this capacitive sensor is to be used for energy harvesting for its potential power supply.
Parasitic consideration for differential capacitive sensor Nurul Arfah Che Mustapha; A. H. M. Zahirul Alam; Sheroz Khan; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.696 KB) | DOI: 10.11591/eei.v8i3.1526

Abstract

Parasitic integration for a single supply differential capacitive sensing technique is presented in this paper. In real capacitive sensor measurement, parasitic impedance exists in its measurement. This paper objective is to study the effect of capacitive and resistive parasitic to the capacitive sensor circuit. The differential capacitive sensor circuit derivation theory is elaborated first. Then, comparison is made using simulation. Test was carried out using frequency from 40 kHz up to 400 kHz. Result is presented and have shown good linearity of 0.99984 at 300 kHz, R-squared value. This capacitive sensor is expected to be used for energy harvesting application.
Design of a Reconfigurable, Modular and Multi-Channel Bioimpedance Spectroscopy System Ahmed Al-Hashimi; Anis Nurashikin Nordin; Amelia Wong Azman
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp428-440

Abstract

This paper presents the design and implementation of a multichannel bio-impedance spectroscopy system on field programmable gate arrays (FPGA). The proposed system is capable of acquiring multiple signals from multiple bio-impedance sensors, process the data on the FPGA and store the final data in the on-board Memory. The system employs the Digital Automatic Balance Bridge (DABB) method to acquire data from biosensors. The DABB measures initial data of a known impedance to extrapolate the value of the impedance for the device under test. This method offers a simpler design because the balancing of the circuit is done digitally in the FPGA rather than using an external circuit. Calculations of the impedance values for the device under test were done in the processor. The final data is sent to an onboard Flash Memory to be stored for later access. The control unit handles the interfacing and the scheduling between these different modules (Processor, Flash Memory) as well as interfacing to multiple Balance Bridge and multiple biosensors. The system has been simulated successfully and has comparable performance to other FPGA based solutions. The system has a robust design that is capable of handling and interfacing input from multiple biosensors. Data processing and storage is also performed with minimal resources on the FPGA.
An Analysis of a Flexible Dry Surface Electrodes Amelia Wong Azman; Muhammad Farhan Azman; Siti Mohd Ariff; Yasir Mohd Mustafah; Huda Adibah Mohd Ramli; AHM Zahirul Alam; Mohamed Hadi Habaebi
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 1: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i1.pp74-83

Abstract

In the medical field, electrodes are commonly used either to retrieve signals or to conduct current. Most of the off-the-shelf surface electrodes are made from metal or rigid substrates. This paper presents a work on designing a new flexible dry electrodes using poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and silver by means of dispenser printing technology. The polyester cotton fabric was selected as the substrate in this electrode designed. To analyse the new proposed composites of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and silver, different mixtures have been applied.  Results from the experiment show that the conductivity of the proposed flexible electrode is comparable with the commercialized pre-gelled electrode when applied to an electrical stimulator device. Eight out of ten subjects under test described no difference in comfort between the proposed electrodes and pre-gelled electrodes.
ECG biometric in real-life settings: analysing different physiological conditions with wearable smart textiles shirts Muhammad Muizz Mohd Nawawi; Khairul Azami Sidek; Amelia Wong Azman
Bulletin of Electrical Engineering and Informatics Vol 12, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i5.5133

Abstract

The adoption of biomedical signals such as the electrocardiogram (ECG) for biometric is rising in tandem with the increased attention to wearable devices. However, despite its potential benefits, ECG is rarely implemented as a biometric mechanism in real-life wearable applications. Therefore, this research aims to analyse the ECG signals extracted from wearable Hexoskin Proshirt for biometric authentication in different physiological conditions. A total of 11 subjects participated in this study, where the ECG signals were recorded while standing, sitting, walking, and uncontrolled activity. The raw ECG signal is first pre-processed using noise-removal butterworth filters in the time domain, followed by an efficient QRS segmented feature extraction approach. Finally, around 854 datasets were generated for training and validation, while the remaining 300 were used to test the proposed recognition method with a quadratic support vector machine (QSVM). The results show that the proposed method achieved a reliable accuracy above 98% with false acceptance rate (FAR) of 0.93%, false rejection rate (FRR) of 3.64%, and true positive rate (TPR) above 96% on the in-house datasets. This researchs findings confirm the possibility of using ECG biometrics for authentication purposes in various real-life settings with varying physiological parameters using a smart textile shirt.