Anis Nurashikin Nordin
International Islamic University Malaysia

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Non-invasive glucose monitoring devices: A review Muhammad Farhan Affendi Mohamad Yunos; Anis Nurashikin Nordin
Bulletin of Electrical Engineering and Informatics Vol 9, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v9i6.2628

Abstract

Diabetes is a growing chronic disease that affect millions of people in the world. Regular monitoring of blood glucose levels in patients is necessary to keep the disease under control. Current methods of blood glucose monitoring devices are typically invasive, causing discomfort to the patients. Non-invasive glucose monitoring devices are a possible game changer for diabetic patients as it reduces discomfort and provides continuous monitoring. This manuscript presents a review of non-invasive glucose biosensors with particular focus on leading technologies available in the market, such as microwave sensing, near-infrared spectroscopy, iontophoresis, and optical methods. This paper intends to describe non-invasive blood glucose monitoring methods using various biological fluids (sweat, saliva, interstitial fluid, urine), highlighting the advantages and drawbacks in latest device development. This review also discusses future trends of glucose detection devices and how it will improve patients’ quality of life.
Modeling and development of radio frequency planar interdigital electrode sensors Muhammad Farhan Affendi bin Yunos; Anis Nurashikin Nordin; Anwar Zainuddin; Sheroz Khan
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.17 KB) | DOI: 10.11591/eei.v8i3.1513

Abstract

The interdigital sensor has been implemented in various field of applications such as microwave device, chemical sensor and biological sensor. This work describes the design and fabrication of an interdigital sensor (IDS) design that has the potential of estimating blood glucose levels using capacitive measurements. The IDS was first designed using theoretical equations and later was optimized by using CST Microwave Studio®. The electrode widths of the sensor were varied from 0.5mm to 0.7mm and the S11 reflection characteristics were simulated.Upon completion of simulations, the sensor was fabricated using copper clad FR4 boards. The fabricated sensors were measured using a vector network analyzer (VNA) and produced resonance frequencies of 2.02, 2.11 and 2.14 GHz. The highest Q obtained was 11.72 from the 2.11 GHz sensor.
Modeling and development of radio frequency planar interdigital electrode sensors Muhammad Farhan Affendi bin Yunos; Anis Nurashikin Nordin; Anwar Zainuddin; Sheroz Khan
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.17 KB) | DOI: 10.11591/eei.v8i3.1513

Abstract

The interdigital sensor has been implemented in various field of applications such as microwave device, chemical sensor and biological sensor. This work describes the design and fabrication of an interdigital sensor (IDS) design that has the potential of estimating blood glucose levels using capacitive measurements. The IDS was first designed using theoretical equations and later was optimized by using CST Microwave Studio®. The electrode widths of the sensor were varied from 0.5mm to 0.7mm and the S11 reflection characteristics were simulated.Upon completion of simulations, the sensor was fabricated using copper clad FR4 boards. The fabricated sensors were measured using a vector network analyzer (VNA) and produced resonance frequencies of 2.02, 2.11 and 2.14 GHz. The highest Q obtained was 11.72 from the 2.11 GHz sensor.
Modeling and development of radio frequency planar interdigital electrode sensors Muhammad Farhan Affendi bin Yunos; Anis Nurashikin Nordin; Anwar Zainuddin; Sheroz Khan
Bulletin of Electrical Engineering and Informatics Vol 8, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (689.17 KB) | DOI: 10.11591/eei.v8i3.1513

Abstract

The interdigital sensor has been implemented in various field of applications such as microwave device, chemical sensor and biological sensor. This work describes the design and fabrication of an interdigital sensor (IDS) design that has the potential of estimating blood glucose levels using capacitive measurements. The IDS was first designed using theoretical equations and later was optimized by using CST Microwave Studio®. The electrode widths of the sensor were varied from 0.5mm to 0.7mm and the S11 reflection characteristics were simulated.Upon completion of simulations, the sensor was fabricated using copper clad FR4 boards. The fabricated sensors were measured using a vector network analyzer (VNA) and produced resonance frequencies of 2.02, 2.11 and 2.14 GHz. The highest Q obtained was 11.72 from the 2.11 GHz sensor.
Design of a Reconfigurable, Modular and Multi-Channel Bioimpedance Spectroscopy System Ahmed Al-Hashimi; Anis Nurashikin Nordin; Amelia Wong Azman
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp428-440

Abstract

This paper presents the design and implementation of a multichannel bio-impedance spectroscopy system on field programmable gate arrays (FPGA). The proposed system is capable of acquiring multiple signals from multiple bio-impedance sensors, process the data on the FPGA and store the final data in the on-board Memory. The system employs the Digital Automatic Balance Bridge (DABB) method to acquire data from biosensors. The DABB measures initial data of a known impedance to extrapolate the value of the impedance for the device under test. This method offers a simpler design because the balancing of the circuit is done digitally in the FPGA rather than using an external circuit. Calculations of the impedance values for the device under test were done in the processor. The final data is sent to an onboard Flash Memory to be stored for later access. The control unit handles the interfacing and the scheduling between these different modules (Processor, Flash Memory) as well as interfacing to multiple Balance Bridge and multiple biosensors. The system has been simulated successfully and has comparable performance to other FPGA based solutions. The system has a robust design that is capable of handling and interfacing input from multiple biosensors. Data processing and storage is also performed with minimal resources on the FPGA.
Verification of Quartz Crystal Microbalance Array using Vector Network Analyzer and OpenQCM Ahmad Anwar Zainuddin; Anis Nurashikin Nordin; Rosminazuin Ab. Rahim; Aliza Aini Md. Ralib; Sheroz Khan; Cyril Guines; Matthieu Chatras; Arnaud Pothier
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 1: April 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i1.pp84-93

Abstract

Quartz Crystal Microbalance (QCM) is a device that allows non-destructive measurements of r in situ reaction activities. In this article, an array comprising of six 3MHz QCM sensors in an array were characterized using a vector network analyzer and OpenQCM, a portable measuring instrument that measures change in resonance frequency. Measurements of S21 transmission characteristics using the vector network analyzer provides the resonance frequency and can also be used to derive the RLC equivalent electrical circuit values of a resonant two-port network based on the Butterworth-Van Dyke model. In this work, Rm, Lm, Cm and Co were obtained via curve-fitting of the measurement results to the simulated results. Measurements were done in triplicates to verify reproducibility for all 6 sensors. For comparison, measurements were also done using a portable, open-source instrument, OpenQCM. The OpenQCM instrument directly measures changes in resonance frequencies, making it ideal for biosensing experiments, which correlate changes in mass with changes in resonance frequencies. Comparison between resonance frequency measurements using VNA and OpenQCM exhibit low percentage difference 0.2%.  This QCM sensor array has the potential of conducting real-time, point-of-care analyses for detection of biological molecules.