Z. A. F. M. Napiah
Universiti Teknikal Malaysia Melaka (UTeM)

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Analysis of analog and RF behaviors in junctionless double gate vertical MOSFET K. E. Kaharudin; Z. A. F. M. Napiah; F. Salehuddin; A. S. M. Zain; Ameer F. Roslan
Bulletin of Electrical Engineering and Informatics Vol 9, No 1: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (318.005 KB) | DOI: 10.11591/eei.v9i1.1861

Abstract

The prime obstacle in continuing the transistor’s scaling is to maintain ultra-shallow source/drain (S/D) junctions with high doping concentration gradient, which definitely demands an advanced and complicated S/D and channel engineering. Junctionless transistor configuration has been found to be an alternative device structure in which the junction and doping gradients could be totally eliminated, thus simplifying the fabrication process. In this paper, a process simulation has been performed to study the impact of junctionless configuration on the analog and RF behaviors of double-gate vertical MOSFET. The result proves that the performance of n-channel junctionless double-gate vertical MOSFET (n-JLDGVM) is slightly better than the junction double-gate vertical MOSFET (n-JDGVM). Junctionless device exhibits better analog behaviors as the transconductance (gm) is increased by approximately 4%. In term of RF behaviors, the junctionless device exhibits 3.4% and 7% higher cut-off frequency (fT) and gain band-width product (GBW) respectively over the junction device.
Performance analysis of ultrathin junctionless double gate vertical MOSFETs K. E. Kaharudin; Z. A. F. M. Napiah; F. Salehuddin; A. S. M. Zain; Ameer F. Roslan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.525 KB) | DOI: 10.11591/eei.v8i4.1615

Abstract

The main challenge in MOSFET minituarization is to form an ultra-shallow source/drain (S/D) junction with high doping concentration gradient, which requires an intricate S/D and channel engineering. Junctionless MOSFET configuration is an alternative solution for this issue as the junction and doping gradients is totally eliminated. A process simulation has been developed to investigate the impact of junctionless configuration on the double-gate vertical MOSFET. The result proves that the performance of junctionless double-gate vertical MOSFETs (JLDGVM) are superior to the conventional junctioned double-gate vertical MOSFETs (JDGVM). The results reveal that the drain current (ID) of the n-JLVDGM and p-JLVDGM could be tremendously enhanced by 57% and 60% respectively as the junctionless configuration was applied to the double-gate vertical MOSFET. In addition, junctionless devices also exhibit larger ION/IOFF ratio and smaller subthreshold slope compared to the junction devices, implying that the junctionless devices have better power consumption and faster switching capability.
Performance analysis of ultrathin junctionless double gate vertical MOSFETs K. E. Kaharudin; Z. A. F. M. Napiah; F. Salehuddin; A. S. M. Zain; Ameer F. Roslan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.525 KB) | DOI: 10.11591/eei.v8i4.1615

Abstract

The main challenge in MOSFET minituarization is to form an ultra-shallow source/drain (S/D) junction with high doping concentration gradient, which requires an intricate S/D and channel engineering. Junctionless MOSFET configuration is an alternative solution for this issue as the junction and doping gradients is totally eliminated. A process simulation has been developed to investigate the impact of junctionless configuration on the double-gate vertical MOSFET. The result proves that the performance of junctionless double-gate vertical MOSFETs (JLDGVM) are superior to the conventional junctioned double-gate vertical MOSFETs (JDGVM). The results reveal that the drain current (ID) of the n-JLVDGM and p-JLVDGM could be tremendously enhanced by 57% and 60% respectively as the junctionless configuration was applied to the double-gate vertical MOSFET. In addition, junctionless devices also exhibit larger ION/IOFF ratio and smaller subthreshold slope compared to the junction devices, implying that the junctionless devices have better power consumption and faster switching capability.
Performance analysis of ultrathin junctionless double gate vertical MOSFETs K. E. Kaharudin; Z. A. F. M. Napiah; F. Salehuddin; A. S. M. Zain; Ameer F. Roslan
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (665.525 KB) | DOI: 10.11591/eei.v8i4.1615

Abstract

The main challenge in MOSFET minituarization is to form an ultra-shallow source/drain (S/D) junction with high doping concentration gradient, which requires an intricate S/D and channel engineering. Junctionless MOSFET configuration is an alternative solution for this issue as the junction and doping gradients is totally eliminated. A process simulation has been developed to investigate the impact of junctionless configuration on the double-gate vertical MOSFET. The result proves that the performance of junctionless double-gate vertical MOSFETs (JLDGVM) are superior to the conventional junctioned double-gate vertical MOSFETs (JDGVM). The results reveal that the drain current (ID) of the n-JLVDGM and p-JLVDGM could be tremendously enhanced by 57% and 60% respectively as the junctionless configuration was applied to the double-gate vertical MOSFET. In addition, junctionless devices also exhibit larger ION/IOFF ratio and smaller subthreshold slope compared to the junction devices, implying that the junctionless devices have better power consumption and faster switching capability.