Mohd Effendi Amran
Ministry of Health Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
Photovoltaic-integrated review and expansion need in green building landscape for bridging the malaysian RE policy Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Sharipah Alwiah Syed Abd Rahaman; Nelidya Md Yusoff; Mohd Hanapi Azizul; Firdaus Muhammad-Sukki
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 1: January 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i1.pp27-35

Abstract

A literature review is presented specifically on the photovoltaic (PV) as a distributed generation (DG) integration approach and the extensiveness through renewable energy (RE) assessment criteria in current green building rating system (GBRS) to: delineate for further classification in terms of installed-capacity; identify the RE applications’ intent / aim; and recommendation for PV-type DG (PV-DG) expansion needs. The paper aims to close the gap in knowledge, by an empirical review of current RE assessment criteria and to portray the expected evolution of RE for higher installed-capacity in ensuring the government key achievement can be achieved. In considering the expansion needs in GBRS, the optimal technique for PV-DG expansion-limit would serve as a conceptual bridge between expanding mechanism and realization of the Malaysian most recent RE policy specifically on the drastically increment of RE quota. These can be achieved since various DG optimization case studies have been presented and overcome with the improvement impact on the test system, in term of power loss reduction, increased efficiency and optimal cost outcome. Future analysis as well as research direction are proposed and linked with some of the previous optimization reviews in recent literature.