Mohamad Zaki Hassan
Universiti Teknologi Malaysia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.