Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Deep Learning for Aspect-Based Sentiment Analysis on Indonesian Hotels Reviews Siwi Cahyaningtyas; Dhomas Hatta Fudholi; Ahmad Fathan Hidayatullah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vo. 6, No. 3, August 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i3.1300

Abstract

Tourism is one of the fastest-growing industries. Many travelers book hotels and share their experiences using travel e-commerce sites. To improve the quality of products and services, we can take advantage by analyzing their reviews. We can see the good and the bad thing reviews in every aspect of the hotel. However, research to analyze sentiment in every aspect using Indonesian hotel reviews is still relatively new. In this work, we propose to create an Aspect-based Sentiment Analysis (ABSA) using Indonesian hotel reviews to solve the problem. This research consists of four steps: collecting data, preprocessing, aspect classification, and sentiment classification. Our classification process compares with eight deep learning methods (RNN, LSTM, GRU, BiLSTM, Attention BiLSTM, CNN, CNN-LSTM, and CNN-BiLSTM). In aspect classification, we have six classes of aspects which are harga (price), hotel, kamar (room), lokasi (location), pelayanan (service), and restoran (restaurant). In sentiment analysis, we compared two scenarios to classify sentiments as positive or negative. The first one is to classify sentiment in all aspects, and the second one is to classify sentiment in every aspect. The results showed that LSTM achieved the best model for aspect classification with an accuracy value of 0.926. For sentiment classification, our experiments showed that classify sentiment in every aspect achieved a better result than classify sentiment in all aspects. The result showed that the CNN model gets an average accuracy score of 0.904.
A Study on Visual Understanding Image Captioning using Different Word Embeddings and CNN-Based Feature Extractions Dhomas Hatta Fudholi; Annisa Zahra; Royan Abida N. Nayoan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 1, February 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i1.1394

Abstract

Image captioning is a task that can provide a description of an image in natural language. Image captioning can be used for a variety of applications, such as image indexing and virtual assistants. In this research, we compared the performance of three different word embeddings, namely, GloVe, Word2Vec, FastText and six CNN-based feature extraction architectures such as, Inception V3, InceptionResNet V2, ResNet152 V2, EfficientNet B3 V1, EfficientNet B7 V1, and NASNetLarge which then will be combined with LSTM as the decoder to perform image captioning. We used ten different household objects (bed, cell phone, chair, couch, oven, potted plant, refrigerator, sink, table, and tv) that were obtained from MSCOCO dataset to develop the model. Then, we created five new captions in Bahasa Indonesia for the selected images. The captions might contain details about the name, the location, the color, the size, and the characteristics of an object and its surrounding area. In our 18 experimental models, we used different combination of the word embedding and CNN-based feature extraction architecture, along with LSTM to train the model. As the result, models that used the combination of Word2Vec + NASNetLarge performed better in generating Indonesian captions than the other models based on BLEU-4 metric.
Mental Health Prediction Model on Social Media Data Using CNN-BiLSTM Abdurrahim; Dhomas Hatta Fudholi
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 9, No. 1, February 2024
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v9i1.1849

Abstract

Social media has transformed into a global platform for expression and interaction where users can share photos, images, and videos. The rapid development and widespread use of social media afford the opportunity to analyze the construction of social life in societies and communities. As a result of alterations in lifestyle during the COVID-19 pandemic, mental health disorders increased. Mental health is a complex disease involving numerous individual, socioeconomic, and clinical variables. Natural language processing and analysis methods are required to address this complexity. The classification of mental health-related texts, which can serve as early warnings and early diagnoses, is facilitated by analytical and natural language processing techniques. In this investigation, a CNN-BiLSTM model was utilized, which was aided by a FastText-based word weighting method. The utilized data set consists of texts on mental health with labels such as borderline personality disorder (BPD), anxiety, depression, bipolar, mentalillness, schizophrenia, and poison. There are 35000 training records and 6108 test records. The data will undergo a data cleansing procedure, which will include lower text stages, number removal, reading mark removal, and stopword removal. Modeling with CNN-BiLSTM and FastText weighting yielded an F1-Score and accuracy of 85% and 85%, respectively. In comparison to the Bi-LSTM model, the F1-Score and accuracy were both 83%.
Co-Authors Abdullah Aziz Sembada Abdullah Aziz Sembada Abyan Fadilla Noor Aditya Perwira Joan Dwitama Affan Taufiqur Afrianto, Nurdi Ahmad Fathan Hidayatullah, Ahmad Fathan Ahmad Luthfi Ahmad Rafie Pratama Altesa Yunistira Andi Wafda Andri Heru Saputra Annisa Zahra Ari Farhan Nurihsan Ari Sujarwo Arief Rahman Arrie Kurniawardhani Arrie Kurniawardhani Chandra Kusuma Dewa Chatarina Umbul Wahyuni Dendy Surya Darmawan Deny Rahmalianto Dimas Adi Wibowo Dimas Danu Budi Pratikto Dimas Pamilih Epin Andrian Dimas Panji Eka Jalaputra Dirgahayu, Raden Teduh Dziky ridhwanulah Eko Prasetio Widhi Eko Setiawan Erin Eka Citra Fahmi Adi Nugraha Ferdian Nursulistio Fery Luvita Sari Gilang Persada Bhagawadita Gunanto Gunanto Harry Akbar Al Hakim Ibnu Fajar Arrochman Insanur Hanifuddin Iqbal Syauqi Mubarak Izzan Yattaqi Nugraha Izzati Muhimmah Jaka Nugraha LAILA KUSUMA WARDANI Lizda Iswari M. Ulil Albab Surya Negara Malik Abdul Aziz Mawar Hardiyanti Meilita . Moch Bagoes Pakarti Moch Yusuf Asyhari Muhammad Abyanda Tamaza Muhammad Habib Izdhihar Muhammad Rizhan Ridha Muhammad Sulthon Alif Novian Mahardika Putra Purwoko, Agus Raden Teduh Dirgahayu Rahadian Kurniawan Rakhmat Syarifudin Rendy Ressa Sutrisno Ridho Iman Tiyar Risca Naquitasia Royan Abida N. Nayoan Sabar Aritonang Rajagukguk Safira Yuniar Putri Buana Salma Aufa Azaliarahma Salsabila Zahirah Pranida Septia Rani Septia Rani Sigit Nugroho Siti Mutmainah Siwi Cahyaningtyas Sri Mulyati Teduh Dirgahayu Tri Handayani Umar Abdul Aziz Al-Faruq Wahyu Fajrin Mustafa windi astriningsih Yasmin Aulia Ramadhini Yoga Sahria Yudi prayudi Zikri Wahyuzi