Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Data Science and Its Applications

Aspect Based Sentiment Analysis on Beauty Product Review Using Random Forest Anggitha Yohana Clara; Adiwijaya Adiwijaya; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.58

Abstract

Cosmetics and beauty products (including skincare) are the products used as body care or face care and used to accentuate the body alure. A product could give diverse sentiment to the consumers including positive and negative sentiment. Many consumers of beauty products are sharing their reviews to help other consumers to find the right products to buy and to give feedback to the brand of the beauty product itself. The number of reviews is inversely proportional to the lack of opinion identification towards product’s aspects. Hence, a study has been conducted to analyze beauty products reviews as toner, serum, sun protection, and exfoliator. The analysis process is conducted aspect based to determine sentiment towards aspect of beauty products based on the reviews. The result is addressed to people using skincare and beauty product brands in deducting consumer’s opinion. The solution to this problem is by using Random Forest with hyperparameters tuning as classification method, and TF-IDF and n-gram as feature extraction methods. The multi-aspect sentiment analysis in this study obtained highest accuracy for 90.48%, precision for 87.27%, recall for 70.13%, and F1-Score for 71.77%.
Classification of Personality based on Beauty Product Reviews Using the TF-IDF and Naïve Bayes (Case Study : Female Daily) Novia Russelia Wassi; Adiwijaya Adiwijaya; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.61

Abstract

A person's personality is an important parameter to determine the character of each person and also as an assessment in various ways. In this day and age personality can not only be known from psychological tests, but also can be known in various ways. One way is through reviews presented in electronic media. In this study, a person's personality was classified into three "Big Five" personality groups, namely: Openness, Conscientiousness, and Extraversion using the Naïve Bayes method and TF-IDF as Feature Extraction. The results of the classification that have been done get 81% accuracy with preproccessing scenarios using Stemming and Stopword, TF-IDF unigram, and BernoulliNB classifier type.
Analysis Sentiment Aspect Level on Beauty Product Reviews Using Chi-Square and Naïve Bayes Felia Novitasari; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 4 No 1 (2021): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2021.4.72

Abstract

The many platforms that are equipped with review features make it easy for people to convey anything. Product reviews are judgments that are opinions from consumers about the products they have purchased. These reviews can provide benefits for both producers and consumers. Reviews from consumers can contain ratings that cover aspects of the product and reviews can run into hundreds or even thousands. A large number of reviews makes it difficult in the sentiment analysis process. Therefore we need a model that can analyze sentiment based on aspects of the product. Sentiment analysis was performed using the naive Bayes algorithm, feature extraction with TF-IDF, and feature selection with chi-square. The application of stopwords removal or stemming processesreprocessing and the use of n-grams in feature extraction can affect the resulting performance. In addition, the application of feature selection to the built model has an important role because it can improve classification performance. From the research results obtained the best accuracy of 80,18%, recall of 72,49%, precision of 77,25%, and f1-score of 74,73%.