Claim Missing Document
Check
Articles

Found 17 Documents
Search

Analisis Standar Operasional Prosedur pada Rintisan Teaching Factory Tax Corner Politeknik Negeri Jember rahma rina wijayanti; Oryza Ardhiarisca; Zilvanhisna Emka Fitri; Datik Lestari; Cherry Triwidiarto; Supriyadi Supriyadi
Jurnal Akuntansi Vol 11 No 2 (2023): AKUNESA (Januari 2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/akunesa.v11n2.p148-155

Abstract

This study aims to develop a standard operating procedure (SOP) for the Teaching Factory (TEFA) Tax Corner at the Jember State Polytechnic (Polije). This is one of the preparations for the establishment of the TEFA Tax Corner. This research is a qualitative research. The data used in this study are primary and secondary data. Primary data obtained from interviews with resource persons, field observations, data analysis. Secondary data is obtained from data supporting the TEFA Tax Corner business process. The first step of this research is to identify the activities at TEFA Tax Corner by visiting the Tax Center FISIP, University of Jember (UNEJ). During the visit, observations, interviews and documentation were carried out on the activities carried out at the UNEJ Tax Center. Furthermore, planning activities to be carried out at Polije, namely tax webinar, webinar related to tax research, training in filling out tax forms, making Management Decrees, cash receipts and cash disbursements. The next stage is making SOPs for these activities by taking into account the bureaucratic conditions in Polije. Classification of the parties and documents related to the TEFA activities and the flow or steps of these activities are carried out. The output of this research is SOP webinars and training, making Management Decrees, cash receipts and cash disbursements.
Comparison of Neural Network Methods for Classification of Banana Varieties (Musa paradiasaca) Zilvanhisna Emka Fitri; Wildan Bakti Nugroho; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Rekayasa Elektrika Vol 17, No 2 (2021)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (411.849 KB) | DOI: 10.17529/jre.v17i2.20806

Abstract

Every region in Indonesia has a very large diversity of banana species, but no system records information about the characteristics of banana varieties. The purpose of this research is to make an encyclopedia of banana types that can be used for learning by classifying banana varieties using banana images. This banana variety classification system uses image processing techniques and artificial neural network methods as classification methods.The varieties of bananas used are pisang merah, pisang pisang mas kirana, pisang klutuk, pisang raja and pisang cavendis. The parameters used are color features (Red, Green, and Blue) and shape features (area, perimeter, diameter, and length of fruit). The intelligent system used is the Backpropagation method and the Radial Basis Function Neural Network. The results showed that both methods were able to classify banana varieties with an accuracy rate of 98% for Backpropagation and 100% for the Radial Basis Function Neural Network.
Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat Zilvanhisna Emka Fitri; Rizkiyah Rizkiyah; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (812.104 KB) | DOI: 10.17529/jre.v16i1.15535

Abstract

The decrease in quality and productivity of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and spotting occurs. The government is trying to provide training to improve the quality of tomatoes for farmers. However, the training was not effective so the researchers helped create a system that was able to educate farmers in the classification of damage to tomato quality. This system serves to facilitate farmers in recognizing tomato damage thereby reducing the risk of crop failure. In this study, the classification method used is backpropagation with 7 input parameters. The input consists of morphological and texture features. The output of this classification system consists of 3 classes are blossom end rot, fruit cracking and fruit spots caused by bacterial specks. The best accuracy level of the system in classifying tomato quality damage in the training process is 89.04% and testing is 81.11%.
Comparison of Neural Network Methods for Classification of Banana Varieties (Musa paradiasaca) Zilvanhisna Emka Fitri; Wildan Bakti Nugroho; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Rekayasa Elektrika Vol 17, No 2 (2021)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v17i2.20806

Abstract

Every region in Indonesia has a very large diversity of banana species, but no system records information about the characteristics of banana varieties. The purpose of this research is to make an encyclopedia of banana types that can be used for learning by classifying banana varieties using banana images. This banana variety classification system uses image processing techniques and artificial neural network methods as classification methods.The varieties of bananas used are pisang merah, pisang pisang mas kirana, pisang klutuk, pisang raja and pisang cavendis. The parameters used are color features (Red, Green, and Blue) and shape features (area, perimeter, diameter, and length of fruit). The intelligent system used is the Backpropagation method and the Radial Basis Function Neural Network. The results showed that both methods were able to classify banana varieties with an accuracy rate of 98% for Backpropagation and 100% for the Radial Basis Function Neural Network.
Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat Zilvanhisna Emka Fitri; Rizkiyah Rizkiyah; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Rekayasa Elektrika Vol 16, No 1 (2020)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17529/jre.v16i1.15535

Abstract

The decrease in quality and productivity of tomatoes is caused by high rainfall, bad weather and cultivation so that the tomatoes become rotten, cracked, and spotting occurs. The government is trying to provide training to improve the quality of tomatoes for farmers. However, the training was not effective so the researchers helped create a system that was able to educate farmers in the classification of damage to tomato quality. This system serves to facilitate farmers in recognizing tomato damage thereby reducing the risk of crop failure. In this study, the classification method used is backpropagation with 7 input parameters. The input consists of morphological and texture features. The output of this classification system consists of 3 classes are blossom end rot, fruit cracking and fruit spots caused by bacterial specks. The best accuracy level of the system in classifying tomato quality damage in the training process is 89.04% and testing is 81.11%.
Penerapan Fitur Warna dan Tekstur untuk Identifikasi Kerusakan Mutu Biji Kopi Arabika (Coffea Arabica) di Kabupaten Bondowoso Zilvanhisna Emka Fitri; Brilyan Andi Syahbana; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Ilmiah Teknologi Informasi Asia Vol 15 No 2 (2021): Volume 15 Nomor 2 (8)
Publisher : LP2M INSTITUT TEKNOLOGI DAN BISNIS ASIA MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jitika.v15i2.593

Abstract

Plantation crops are also a source of foreign exchange Indonesia is coffee. There are only two types of coffee that have economic value for cultivation, namely Arabica coffee and Robusta coffee. Bondowoso is a district in East Java that develops Arabica coffee. The problem is that farmers still use direct observation (manual) on each coffee bean to determine the quality of coffee beans so that this research is expected to be able to assist farmers in sorting the damage to the quality of coffee beans based on color and texture. The features used are color features and GLCM texture features at 0̊ and 45̊ angles. The total number of data is 198. The Backpropagation method is able to classify quality damage to Arabica coffee beans with a training accuracy rate of 100% and a testing accuracy rate of 97.5% at a learning rate variation of 0.5.
Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants Zilvanhisna Emka Fitri; Lalitya Nindita Sahenda; Sulton Mubarok; Abdul Madjid; Arizal Mujibtamala Nanda Imron
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 1 (2023)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i1.2220

Abstract

in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.