Rizki Tri Prasetio
Universitas Adhirajasa Reswara Sanjaya

Published : 20 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Informatika

INVENTORY CONTROL USING STATISTICS FORECASTING ON MANUFACTURE COMPANY Prasetio, Rizki Tri
Jurnal Informatika Vol 1, No 2 (2014): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (356.25 KB) | DOI: 10.31294/ji.v1i2.45

Abstract

Abstract - Inventory Control is a main and the most crucial factor for company that can cause an efficient production process. A lot of research use different method to support inventory control. This research use several forecasting method such as, Naïve Method, Exponential Smoothing, Exponential Smoothing with Trend, Moving Average, Weighted Moving Average and Linear Regression. Economic Order Quantity is used to calculate raw materials inventory. This research results suggest that company use Linear Regression as it has the smallest MAD and MSE of the six other methods. The company also has to implement Economic Order Quantity to minimalize loss profit due to excess inventory. Keywords : Inventory Control, Forecasting Method, Economic Order Quantity Abstrak - Pengendalian inventory merupakan salah satu faktor utama dan sangat penting bagi perusahaan karena sangat berpengaruh terhadap terciptanya proses produksi yang efisien. Banyak penelitian yang menggunakan beberapa metode guna mendukung pengendalian inventory. Penelitian ini menggunakan beberapa metode peramalan (forecasting method) diantaranya, Naïve Method, Exponential Smoothing, Exponential Smoothing with Trend, Moving Average, Weighted Moving Average dan Linear Regression. Serta Economic Order Quantity (EOQ) yang digunakan untuk menghitung persediaan bahan baku yang dibutuhkan dalam proses produksi. Hasil penelitian menghasilkan bahwa metode peramalan Linear Regression memiliki tingkat kesalahan yang dihitung menggunakan MAD dan MSE paling kecil diantara 6 metode lainnya. Serta mengimplementasikan Economic Order Quantity untuk meminimalisir kerugian akibat kelebihan persediaan. Kata Kunci : Pengendalian Persediaan, Metode Peramalan, Economic Order Quantity
Penerapan Inferensi Backward Chaining Pada Sistem Pakar Diagnosa Awal Penyakit Tulang Asti Herliana; Visqia Ade Setiawan; Rizki Tri Prasetio
Jurnal Informatika Vol 5, No 1 (2018): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (452.011 KB) | DOI: 10.31294/ji.v5i1.2818

Abstract

Abstrak Tulang merupakan bagian yang sangat penting di dalam bagian ortopedi manusia. Tulang bukan hanya kerangka penguat tubuh tetapi juga merupakan bagian dari susunan sendi, sebagai pelindung tubuh, tempat melekatnya bagian ujung otot yang melekat pada tulang. Terbatasnya jumlah pakar Penyakit Tulang serta minimnya pengetahuan masyarakat tentang penyakit tulang menjadi kendala mengapa penyakit ini tidak mudah diatasi. Banyaknya gejala yang mirip untuk menentukan suatu penyakit Tulang. Dari masalah diatas maka dibuatlah aplikasi sistem pakar diagnosa awal penyakit tulang. Dari penelitian yang dilakukan menghasilkan sebuah perangkat lunak Sistem Pendukung Keputusan Klinis berbasis web untuk diagnosa Penyakit Tulang. Informasi yang dihasilkan adalah hasil diagnosa penyakit berdasarkan gejala-gejala yang dipilih oleh user. Hasil uji coba menunjukkan bahwa aplikasi ini layak dan dapat digunakan sebagai alat bantu para medis Penyakit Tulang dalam mendiagnosa awal. Kata Kunci : Sistem Pakar, Penyakit Tulang, Diagnosa awal, Backward Chaining , Web Progaming. Abstract Bone was a very important part in the human orthopedics. Bone is not only the body's reinforcement part, but it is also part of the joints, as a protector of the body, where the attachment of the muscle ends attached to the bone. The limited number of experts in Bone Disease and the lack of public knowledge about bone disease is the reason why this disease is not easy to overcome. The number of similar symptoms for a bone disease. From the above problems then made the application of expert systems early diagnosis of bone disease. From research conducted a software Clinical Decision Support System web-based for the diagnosis of Bone Disease. The resulting information is the result of diagnosis of the disease based on the symptoms chosen by the user. The results of the trial show this application is feasible and can be used as a tool of medical ailments of bone disease in early diagnosis. Keyword : Expert System, Bone Disease, Early Diagnose, Backward Chainning, Web Programming
PENERAPAN TEKNIK BAGGING PADA ALGORITMA KLASIFIKASI UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS DATASET MEDIS Rizki Tri Prasetio; Pratiwi Pratiwi
Jurnal Informatika Vol 2, No 2 (2015): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (536.145 KB) | DOI: 10.31294/ji.v2i2.118

Abstract

ABSTRACT – The class imbalance problems have been reported to severely hinder classification performance of many standard learning algorithms, and have attracted a great deal of attention from researchers of different fields. Therefore, a number of methods, such as sampling methods, cost-sensitive learning methods, and bagging and boosting based ensemble methods, have been proposed to solve these problems. Some medical dataset has two classes has two classes or binominal experiencing an imbalance that causes lack of accuracy in classification. This research proposed a combination technique of bagging and algorithms of classification to improve the accuracy of medical datasets. Bagging technique used to solve the problem of imbalanced class. The proposed method is applied on three classifier algorithm i.e., naïve bayes, decision tree and k-nearest neighbor. This research uses five medical datasets obtained from UCI Machine Learning i.e.., breast-cancer, liver-disorder, heart-disease, pima-diabetes and vertebral column. Results of this research indicate that the proposed method makes a significant improvement on two algorithms of classification i.e. decision tree with p value of t-Test 0.0184 and k-nearest neighbor with p value of t-Test 0.0292, but not significant in naïve bayes with p value of t-Test 0.9236. After bagging technique applied at five medical datasets, naïve bayes has the highest accuracy for breast-cancer dataset of 96.14% with AUC of 0.984, heart-disease of 84.44% with AUC of 0.911 and pima-diabetes of 74.73% with AUC of 0.806. While the k-nearest neighbor has the best accuracy for dataset liver-disorder of 62.03% with AUC of 0.632 and vertebral-column of 82.26% with the AUC of 0.867. Keywords: ensemble technique, bagging, imbalanced class, medical dataset. ABSTRAKSI – Masalah ketidakseimbangan kelas telah dilaporkan sangat menghambat kinerja klasifikasi banyak algoritma klasifikasi dan telah menarik banyak perhatian dari para peneliti dari berbagai bidang. Oleh karena itu, sejumlah metode seperti metode sampling, cost-sensitive learning, serta bagging dan boosting, telah diusulkan untuk memecahkan masalah ini. Beberapa dataset medis yang memiliki dua kelas atau binominal mengalami ketidakseimbangan kelas yang menyebabkan kurangnya akurasi pada klasifikasi. Pada penelitian ini diusulkan kombinasi teknik bagging dan algoritma klasifikasi untuk meningkatkan akurasi dari klasifikasi dataset medis. Teknik bagging digunakan untuk menyelesaikan masalah ketidakseimbangan kelas. Metode yang diusulkan diterapkan pada tiga algoritma classifier yaitu, naïve bayes, decision tree dan k-nearest neighbor. Penelitian ini menggunakan lima dataset medis yang didapatkan dari UCI Machine Learning yaitu, breast-cancer, liver-disorder, heart-disease, pima-diabetes dan vertebral column. Hasil penelitian menunjukan bahwa metode yang diusulkan membuat peningkatan yang signifikan pada dua algoritma klasifikasi yaitu decision tree dengan P value of t-Test sebesar 0,0184 dan k-nearest neighbor dengan P value of t-Test sebesar 0,0292, akan tetapi tidak signifikan pada naïve bayes dengan P value of t-Test sebesar 0,9236. Setelah diterapkan teknik bagging pada lima dataset medis, naïve bayes memiliki akurasi paling tinggi untuk dataset breast-cancer sebesar 96,14% dengan AUC sebesar 0,984, heart-disease sebesar 84,44% dengan AUC sebesar 0,911dan pima-diabetes sebesar 74,73% dengan AUC sebesar 0,806. Sedangkan k-nearest neighbor memiliki akurasi yang paling baik untuk dataset liver-disorder sebesar 62,03% dengan AUC sebesar dan 0,632 dan vertebral column dengan akurasi sebesar 82,26% dengan AUC sebesar 0,867. Kata Kunci: teknik ensemble, bagging, ketidakseimbangan kelas, dataset medis.
Optimasi Klasifikasi Jenis Hutan Menggunakan Deep Learning Berbasis Optimize Selection Rizki Tri Prasetio; Endang Ripandi
Jurnal Informatika Vol 6, No 1 (2019): April 2019
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.141 KB) | DOI: 10.31294/ji.v6i1.5176

Abstract

AbstrakHutan adalah paru-paru dunia, maka menjaga kelestarian hutan merupakan suatu keharusan. Menurut WWF (2015) bahwa lebih dari 170 hektar hutan di seluruh dunia akan menghilang secara pesat hingga tahun 2030 mendatang. Brian Johnson, Ryutaro Tateishi, dan Zhixiao Xie (2010) melakukan penelitian untuk mengklasifikasikan jenis populasi tumbuhan hutan pada hutan Ibraki, Jepang. Algoritma SVM (Support Vector Machine) dan MLP (Multy Layer Perceptron) diterapkan untuk mengklasifikasikan jenis populasi tumbuhan hutan di hutan Ibraki dengan hasil akurasi 85.9%. Hasil Penelitian Brian Johnson dkk, diberi nama Forest Type Mapping Datasets.  Hasil akurasi yang diperoleh dari penerapan algoritma SVM dan MLP masih belum mencapai hasil akurasi yang optimal dan masih mungkin untuk ditingkatkan. Untuk dapat meningkatkan hasil akurasi yang optimal terhadap klasifikasi jenis populasi tumbuhan hutan pada Forest Type Mapping Datasets, maka pada penelitian ini diusulkan untuk menerapkan algoritma optimasi fitur Optimize Selection pada algoritma Deep Learning. Hasil penelitian menunjukan bahwa metode yang diusulkan membuat peningkatan akurasi yang signifikan. Nilai akurasi klasifikasi pada jenis populasi tumbuhan hutan yang dihasilkan algoritma Deep Learning dengan optimasi fitur Optimize Selection berhasil meningkat menjadi  96.46%.
Implementasi Algoritma Genetika pada k-nearest neighbours untuk Klasifikasi Kerusakan Tulang Belakang Rizki Tri Prasetio; Ali Akbar Rismayadi; Iedam Fardian Anshori
Jurnal Informatika Vol 5, No 2 (2018): Jurnal INFORMATIKA
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.501 KB) | DOI: 10.31294/ji.v5i2.4123

Abstract

AbstrakKerusakan tulang belakang dialami oleh sekitar dua pertiga orang dewasa serta termasuk ke dalam penyakit yang paling umum kedua setelah sakit kepala. Klasifikasi gangguan tulang belakang sulit dilakukan karena membutuhkan radiologist untuk menganalisa citra Magnetic Resonance Imaging (MRI). Penggunaan Computer Aided Diagnosis (CAD) System dapat membantu radiologist untuk mendeteksi kelainan pada tulang belakang dengan lebih optimal. Dataset vertebral column memiliki tiga kelas sebagai klasifikasi penyakit kerusakan tulang belakang yaitu, herniated disk, spondylolisthesis dan kelas normal yang diambil berdasarkan hasil ekstraksi citra MRI. Dataset akan diolah dalam lima eksperimen berdasarkan validasi dataset menggunakan split validation dengan pembagian data training dan data testing yang bervariasi. Pada penelitian ini diusulkan implementasi algoritma genetika pada algoritma k-nearest neighbours untuk meningkatkan akurasi dari klasifikasi gangguan tulang belakang. Algoritma genetika digunakan untuk fitur seleksi dan optimasi parameter algoritma k-nearest neighbours. Hasil penelitian menunjukan bahwa metode yang diusulkan menghasilkan peningkatan yang signifikan dalam klasifikasi kerusakan pada tulang belakang. Metode yang diusulkan menghasilkan rata-rata akurasi sebesar 93% dari lima eksperimen. Hasil ini lebih baik dari algoritma k-nearest neighbours yang menghasilkan rata-rata akurasi hanya sebesar 82.54%. Kata kunci: algoritma genetika, k-nearest neighbours, kerusakan tulang belakang, vertebral AbstractSpinal disorder is experienced by about two-thirds of adults and is included in the second most common disease after headaches. Classification of spinal disorders is difficult because it requires a radiologist to analyze Magnetic Resonance Imaging (MRI) images. The use of Computer Aided Diagnosis (CAD) System can help radiologists to detect abnormalities in the spine more optimally. The vertebral column dataset has three classes as a classification of spinal disorders, namely, herniated disk, spondylolisthesis and normal classes taken based on MRI Image extraction. The dataset will be processed in five experiments based on dataset validation using split validation with various training data and testing data. In this study proposed the implementation of genetic algorithms in the k-nearest neighbors algorithm to improve the accuracy of the classification of spinal disorders. Genetic algorithms are used for algorithm feature selection and parameter optimization of k-nearest neighbors. The results showed that the proposed method produced a significant increase in the classification of spinal disorder. The proposed method produces an average accuracy of 93% from five experiments. This result is better than the k-nearest neighbors algorithm which produces an average accuracy of only 82.54%. Keywords: genetic algorithm, k-nearest neighbours, spinal disorder, vertebral column.